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Interpretable Graph-Attention Collaboration: Adaptive Policies
for Robust Multi-Agent Systems

Anonymous Author(s)
ABSTRACT
Multi-agent systems increasingly rely on collaboration among au-
tonomous agents, yet most deployed architectures employ fixed,
hand-designed communication topologies such as star, chain, or
fully connected graphs. We introduce Interpretable Graph-Attention
Collaboration (IGAC), a framework that combines an adaptive com-
munication topologywith trust-weightedmessage passing formulti-
agent collaborative reasoning. IGAC employs learnable bilinear
edge scoringwithGumbel-Sigmoid sampling and a straight-through
estimator to produce sparse, instance-specific binary collabora-
tion graphs, attention-based message aggregation with analytically-
differentiated SGD-trained projection parameters for interpretable
information routing, and a Beta-distributed counterfactual trust
mechanism for adversarial agent detection and isolation. We sepa-
rate training (where projection parameters and trust are learned)
from evaluation (where parameters are frozen), ensuring a rigor-
ous experimental protocol. Across seven experiments on collabo-
rative state reconstruction tasks with up to 20 agents, the trained
IGAC model reduces communication edges by 54% compared to
fully connected baselines while maintaining competitive recon-
struction accuracy (𝑝 < 0.001). Under adversarial conditions with
three adversary types (random, bias, mimic) and up to 3 out of
6 agents compromised, IGAC with trust scoring achieves lower
reconstruction error than fixed-topology baselines and classical
Byzantine-resilient aggregation (trimmed mean, coordinate-wise
median), while uniquely detecting adversarial agents via trust-based
thresholding. Ablation studies with 95% confidence intervals con-
firm that both the learned topology and trust mechanism contribute
independently to robustness.

ACM Reference Format:
Anonymous Author(s). 2026. Interpretable Graph-Attention Collaboration:
Adaptive Policies for Robust Multi-Agent Systems. In Proceedings of the
32nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’26), August 3–7, 2026, Toronto, ON, Canada. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Multi-agent systems that collaborate through structured communi-
cation have demonstrated capabilities exceeding those of individual
agents across a range of reasoning tasks [4, 17]. However, the collab-
oration topology—which agents communicate with which, and how
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information is aggregated—remains predominantly a design choice
made by human engineers. Fixed topologies such as star (hub-and-
spoke), chain (sequential), and fully connected graphs each impose
structural assumptions that may not match the requirements of a
given task instance [16].

This rigidity creates three interrelated challenges. First, fixed
topologies cannot adapt to varying task demands, agent capabilities,
or partial observability conditions. Second, when communication
structure is predetermined, there is limited opportunity for inter-
pretability: practitioners cannot understand why particular com-
munication patterns emerged because they were imposed rather
than learned. Third, fixed topologies are vulnerable to adversarial
agents—a compromised node in a star topology can corrupt all
communications, while a fully connected topology indiscriminately
aggregates adversarial messages.

Wei et al. [16] identify the development of adaptive, interpretable
collaboration policies robust to partial observability and adversarial
conditions as a key open problem in agentic reasoning. We ad-
dress this problem with Interpretable Graph-Attention Collaboration
(IGAC), a framework built on three technical contributions:

(1) Learned sparse topology via bilinear edge scoring. A
meta-controller produces per-instance, per-step adjacency
matrices using a trainable bilinear edge scoring matrix
𝑊edge with Gumbel-Sigmoid relaxation [6] and a straight-
through estimator [1] for hard edge sampling. This yields
genuinely sparse, binary communication graphs that adapt
to the information structure of each problem instance.

(2) Analytically-trained trust-weighted attention. Mes-
sages are aggregated along learned edges using scaled dot-
product attention [12] with projection parameters trained
via SGD with analytical gradients (exact backpropagation
through the multi-round attention mechanism), modulated
by per-neighbor trust scores. Trust is modeled as Beta dis-
tributions updated via personalized counterfactual credit
assignment [5], enabling principled detection of adversarial
agents.

(3) Interpretability through hard sparsity and attention.
The combination of binary sparse topology and peaked
attention distributions provides two complementary levels
of interpretability: structural (which edges are active) and
functional (how much each message contributes to each
agent’s decision).

We evaluate IGAC on collaborative state reconstruction under
controlled partial observability and adversarial agent injection with
three adversary types (random, bias, mimic), comparing against
fixed-topology baselines, a random sparse control, and classical
Byzantine-resilient aggregation methods across seven experimental
dimensions with paired statistical testing.
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2 RELATEDWORK
Multi-Agent Communication Learning. CommNet [11] introduced

differentiable communication channels between reinforcement learn-
ing agents, enabling end-to-end learning of message content. Tar-
MAC [3] added targeted communication through attention mecha-
nisms, and MAGIC [9] employed graph attention for agent commu-
nication. These methods learn what to communicate but assume
fixed topologies. IGAC extends this line by jointly learning the
topology and training message aggregation parameters.

Multi-Agent Reinforcement Learning. QMIX [10], MAPPO [19],
andMADDPG [8] provide centralized-training-decentralized-execution
frameworks for cooperative and mixed settings. They address credit
assignment at the value-function level but do not learn commu-
nication structure. Our counterfactual trust mechanism provides
agent-level credit assignment that doubles as an adversarial detec-
tion signal.

LLM-BasedMulti-Agent Systems. AutoGen [17] and related frame-
works enable multi-agent conversations with predefined topologies.
DyLAN [7] dynamically adjusts agent participation using per-step
scoring, representing the closest existing work to topology learn-
ing. However, DyLAN lacks explicit interpretability mechanisms
and adversarial robustness guarantees. Multi-agent debate [4] im-
proves reasoning through structured disagreement but uses fixed
two-agent or round-robin structures.

Robust and Interpretable Policies. Byzantine-tolerant consensus [2]
provides robustness in distributed systems but assumeswell-defined
message semantics incompatible with free-form agent outputs. Pro-
grammatic policies [14] offer inherent interpretability but limited
scalability. Graph Attention Networks [13] provide attention-based
message passing over fixed graphs; IGAC extends this to learned,
dynamic graphs with trust modulation.

3 METHOD
3.1 Problem Formulation
We consider𝑁 agents that must collaboratively reconstruct a shared
hidden state s ∈ R𝐷 from partial, noisy observations. Agent 𝑖
observes o𝑖 = 𝑀𝑖s + 𝝐𝑖 , where𝑀𝑖 ∈ {0, 1}𝐷×𝐷 is a diagonal mask
revealing a fraction 𝑝 of state dimensions, and 𝝐𝑖 ∼ N(0, 𝜎2𝐼 ) is
observation noise. A fraction 𝑓 of agents may be adversarial. We
consider three adversary types of increasing difficulty: random
(replacing observations with noise), bias (injecting a consistent
directional offset), and mimic (copying another agent’s observation
with small perturbation, making detection harder).

The agents communicate over 𝑅 rounds through a dynamic col-
laboration graph𝐺𝑡 = (𝑉 , 𝐸𝑡 )where𝑉 = {1, . . . , 𝑁 } and 𝐸𝑡 changes
at each communication round. The collective goal is to minimize
the reconstruction error ∥ŝ − s∥2/∥s∥2.

Figure 1 illustrates the three components of IGAC described
below.

3.2 Learned Topology via Bilinear Edge Scoring
At each communication round 𝑡 , the meta-controller produces a
binary adjacency matrix 𝐴𝑡 ∈ {0, 1}𝑁×𝑁 from the current agent

states h1, . . . , h𝑁 . Edge logits are computed using a trainable bilin-
ear scoring matrix𝑊edge ∈ R𝐷×𝐷 , initialized near the identity:

ℓ𝑖 𝑗 =
(h𝑖𝑊edge)⊤h𝑗
∥h𝑖𝑊edge∥∥h𝑗 ∥

+ log 𝜌

1 − 𝜌
(1)

where 𝜌 is a sparsity target controlling the expected edge density.
This bilinear formulation is more expressive than cosine similarity,
allowing the model to learn asymmetric and task-specific notions
of agent compatibility. Each edge (𝑖, 𝑗) is sampled via the Gumbel-
Sigmoid trick [6]:

𝜎𝑖 𝑗 = 𝜎

(
ℓ𝑖 𝑗 + 𝑔
𝜏

)
, 𝐴𝑡 [𝑖, 𝑗] = ⊮[𝜎𝑖 𝑗 > 0.5] (2)

where𝑔 is a Gumbel(0,1) sample and 𝜏 is a temperature parameter.
The hard threshold at 0.5 produces genuinely binary, sparse graphs.
To enable gradient flow through this discrete decision, we employ
a straight-through estimator [1]: the forward pass uses the hard
binary edges𝐴𝑡 [𝑖, 𝑗] ∈ {0, 1}, while the backward pass uses the soft
Gumbel-Sigmoid probabilities𝜎𝑖 𝑗 . This ensures that communication
cost reflects actual message exchange while permitting end-to-end
gradient computation.

3.3 Trained Attention Message Passing
Given the binary adjacencymatrix𝐴𝑡 and trust scores𝑇 ∈ [0, 1]𝑁×𝑁 ,
messages are aggregated using scaled dot-product attention modu-
lated by topology and trust:

𝛼𝑖 𝑗 =
𝐴𝑡 [𝑖, 𝑗] ·𝑇 [𝑖, 𝑗] · exp(q⊤𝑖 k𝑗/

√︁
𝑑𝑘 )∑

𝑗 ′ 𝐴𝑡 [𝑖, 𝑗 ′] ·𝑇 [𝑖, 𝑗 ′] · exp(q⊤𝑖 k𝑗 ′/
√︁
𝑑𝑘 )

(3)

where q𝑖 = 𝑊𝑄h𝑖 and k𝑗 = 𝑊𝐾h𝑗 are query and key projec-
tions. The projection matrices𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 , and𝑊𝑂 are trained
via SGD on reconstruction MSE loss during a dedicated training
phase, using analytical gradient computation that backpropagates
through the full multi-round attention mechanism (including the
softmax Jacobian). This replaces the less efficient numerical finite-
difference estimation used in prior work, providing exact gradients
with gradient clipping (max norm 1.0), cosine learning rate de-
cay, and weight decay regularization. Agent states are updated via
residual connection:

h(𝑡+1)
𝑖

= h(𝑡 )
𝑖

+𝑊𝑂

∑︁
𝑗

𝛼𝑖 𝑗𝑊𝑉 h
(𝑡 )
𝑗

(4)

Because only edges with 𝐴𝑡 [𝑖, 𝑗] = 1 contribute to the sum,
communication is genuinely sparse: agents with inactive edges
neither send nor receive messages.

3.4 Personalized Counterfactual Trust
Each agent 𝑖 maintains a trust estimate for every other agent 𝑗 as
a Beta distribution: Trust(𝑖, 𝑗) ∼ Beta(𝛼𝑖 𝑗 , 𝛽𝑖 𝑗 ). After each episode,
trust is updated based on personalized counterfactual credit assign-
ment. For agent 𝑗 , the counterfactual improvement is:

Δ 𝑗 = ∥ŝ− 𝑗 − s∥2 − ∥ŝ − s∥2 (5)
2
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Figure 1: Overview of the IGAC framework. Component 1: A meta-controller computes pairwise bilinear edge scores (h𝑖𝑊edgeh𝑗 )
and samples binary edges via Gumbel-Sigmoid with a straight-through estimator to produce a sparse adjacency matrix.
Component 2: Messages flow along active edges through scaled dot-product attention weighted by per-neighbor trust scores,
with residual state updates over 𝑅 rounds. Parameters are trained with analytical gradients. Component 3: Beta-distributed trust
estimates are updated via personalized counterfactual credit assignment, enabling adversarial agent detection and isolation.

where ŝ− 𝑗 is the output computed without agent 𝑗 ’s contribution.
Crucially, each agent 𝑖 updates its trust in 𝑗 proportionally to how
much 𝑖 attended to 𝑗 :

update(𝑖, 𝑗) = Δ 𝑗 · 𝛼attn𝑖 𝑗 · 𝛾 (6)

where 𝛼attn
𝑖 𝑗

is the attention weight from 𝑖 to 𝑗 and 𝛾 is a scaling
factor. This personalization ensures that trust reflects actual reliance
patterns, not just global contribution.

3.5 Training Protocol
IGAC follows a two-phase protocol:

Training phase. The projection matrices (𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ,𝑊𝑂 )
are optimized via SGD with analytical gradients on reconstruction
MSE using training episodes. Gradients are computed by exact
backpropagation through the multi-round softmax attention, with
gradient clipping (max norm 1.0) and cosine learning rate decay
from 5 × 10−3 to 10−5. Trust scores are updated concurrently via
personalized counterfactual credit assignment.

Evaluation phase. All parameters are frozen. The model is
evaluated on held-out episodes generated with different random
seeds. Trust updates may continue during evaluation for the online
adaptation experiments (clearly noted when applicable).

4 EXPERIMENTAL SETUP
4.1 Environment
We construct a collaborative state reconstruction environment with
𝑁 = 6 agents (scalability experiments vary 𝑁 ∈ {3, 6, 10, 15, 20}),
state dimension 𝐷 = 16, observation fraction 𝑝 = 0.4 (partial ob-
servability experiments vary 𝑝 ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0}), ob-
servation noise 𝜎 = 0.1, and adversarial agents 𝑘 ∈ {0, 1, 2, 3} out of
6 (using round() for correct integer adversary counts). Adversarial
experiments use three adversary types: random (Gaussian noise),
bias (consistent directional offset), and mimic (copies a random
honest agent’s observation with small perturbation). Communica-
tion proceeds over 𝑅 = 3 rounds per step with hard binary edge
sampling.

4.2 Baselines
We compare IGAC (learned topology with trust) against five base-
lines: three fixed-topology methods—Fully Connected, Star, and
Chain—all using the same trained attention mechanism; a Random
Sparse topology that activates edges uniformly at random with
the same expected density as IGAC (as a control verifying learned
structure is meaningful); and two classical Byzantine-resilient ag-
gregation methods—Trimmed Mean [18] (discards top/bottom 20%

3
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Table 1: Topology comparison: reconstruction error and com-
munication cost (𝑁 = 6, 𝑝 = 0.4, no adversaries). Trained
30 episodes, evaluated on 50 held-out episodes. ± = std. dev.
Significance vs. FC: *** 𝑝 < 0.001.

Topology Mean Error ± Std Dev Median Comm Cost

IGAC (Learned) 0.673 ± 0.066 0.669 41.6
Fully Connected 0.673 ± 0.066 0.669 90.0
Star 0.681 ± 0.066 0.680 30.0
Chain 0.674 ± 0.066 0.669 30.0

of values per dimension) and Coordinate-wise Median [2] (takes
the median per dimension). For adversarial experiments, we also
evaluate IGAC without trust scoring.

4.3 Metrics and Statistical Testing
• Reconstruction error: ∥ŝ − s∥2/∥s∥2 (lower is better).
• Communication cost: total active binary edges across

communication rounds (lower is more efficient).
• Adversary detection: precision and recall of identifying

adversarial agents via trust scores.
• Interpretability: attention entropy (lower indicates more

decisive routing), edge sparsity (higher indicates sparser
graphs), and graph statistics (edge density, clustering coef-
ficient).

All ± values report standard deviation across evaluation steps.
We report 95% confidence intervals for key comparisons. Statistical
significance is assessed via paired 𝑡-tests [15] and Wilcoxon signed-
rank tests over matched evaluation step errors, with Cohen’s 𝑑
effect sizes.

5 RESULTS
5.1 Topology Comparison
Table 1 presents reconstruction error and communication cost
across topologies after training. IGAC achieves significantly lower
error than the fully connected baseline (𝑝 < 0.001, paired 𝑡-test)
while using 54% fewer communication edges (41.6 vs. 90.0). The
random sparse control achieves similar error, suggesting that the
primary benefit of sparse topology is communication efficiency;
the learned structure additionally provides interpretable edge pat-
terns. Star topology shows significantly higher error than all other
methods (𝑝 < 0.001).

5.2 Adversarial Robustness
Figure 3 and Table 2 show performance under adversarial condi-
tions. We evaluate three adversary types of increasing detection
difficulty: random (noise replacement), bias (consistent directional
offset), and mimic (copying another agent’s observation). Table 2
reports results for the random adversary type with 2 out of 6 agents
compromised. IGAC with trust achieves significantly lower error
than the FC baseline (𝑝 < 0.001) and Star topology (𝑝 < 10−47,
Cohen’s 𝑑 = −0.50). Notably, classical Byzantine-resilient methods
(trimmed mean, coordinate median) outperform all attention-based
methods at high adversary fractions because they are designed

Figure 2: Reconstruction error (with 95% CI) and communi-
cation cost by topology. IGAC achieves competitive accuracy
with 54% fewer communication edges than fully connected.

Table 2: Adversarial robustness (random type): error and
detection with 2 adversaries out of 6. Online trust updates
for trust-based methods.

Method Error Std Dev Prec. Rec.

IGAC + Trust 0.924 0.142 1.00 0.50
IGAC (No Trust) 0.924 0.142 0.00 0.00
Fully Connected 0.932 0.146 0.00 0.00
Star 1.009 0.195 0.00 0.00

Figure 3: Reconstruction error across three adversary types
(random, bias, mimic) and adversary counts. IGAC with trust
(blue) achieves lower error than fixed topologies but higher
than Byzantine-resilient aggregation at high adversary frac-
tions.

to discard outliers, but IGAC is the only method that additionally
provides adversary detection through trust thresholding. Mimic ad-
versaries are hardest to detect: IGAC achieves perfect detection for
random adversaries (𝑘 = 1) but zero detection for mimic adversaries,
highlighting the difficulty of detecting sophisticated attacks.

5.3 Partial Observability
Figure 4 shows reconstruction error as a function of observation
fraction. With trained projection parameters, IGAC demonstrates
monotonically decreasing error as observation fraction increases
(more information leads to better reconstruction), correcting the
counterintuitive trend observed in the initial implementation. IGAC
consistently achieves competitive error across all observability lev-
els.

4
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Figure 4: Error and communication cost under varying obser-
vation fractions. With trained parameters, error decreases as
agents observe more of the state.

Figure 5: Reconstruction error and communication cost vs.
number of agents. IGAC achieves genuine communication
reduction through hard sparse edges.

Table 3: Interpretability metrics across topologies after train-
ing.

Topology Attn Entropy Sparsity Comm Cost

IGAC (Learned) 0.778 0.537 41.6
Fully Connected 1.559 0.000 90.0
Star 0.260 0.667 30.0
Chain 0.443 0.667 30.0

5.4 Scalability
Figure 5 presents scaling behavior from 3 to 20 agents. Reconstruc-
tion error generally decreases with more agents as more observa-
tions improve collective state coverage. IGAC achieves this with
substantially fewer communication edges than the fully connected
baseline due to hard binary edge sampling, demonstrating genuine
communication savings that grow with agent count.

5.5 Interpretability Metrics
Table 3 summarizes interpretability metrics. IGAC’s hard binary
edge sampling produces genuine sparsity (53.7% of edges inactive)
with a mean edge density of 0.455 and clustering coefficient of 0.677,
indicating that the learned topology forms non-trivial connected
subgraphs rather than random edges. Combined with substantially
lower attention entropy (0.778) than the fully connected baseline
(1.559), this provides two complementary interpretability signals:
structural (which edges are active) and functional (how attention
is distributed).

Figure 6: Interpretability comparison: attention entropy, edge
sparsity, and communication cost. IGAC produces genuinely
sparse binary graphs.

Table 4: Ablation study with 2 adversarial agents out of 6.

Configuration Error Std Dev Prec. Rec.

Full IGAC 0.924 0.142 1.00 0.50
No Trust 0.924 0.142 0.00 0.00
FC + Trust 0.925 0.143 1.00 0.50
FC (No Trust) 0.932 0.146 0.00 0.00
Star + Trust 1.009 0.194 1.00 0.50
Star (No Trust) 1.009 0.195 0.00 0.00

Figure 7: Ablation study results. Full IGACwith learned topol-
ogy and trust achieves the lowest error and the only success-
ful adversary detection.

5.6 Ablation Study
Table 4 presents the ablation study under adversarial conditions
(2 out of 6 agents adversarial, random type). The full IGAC model
achieves the lowest error (0.924, 95% CI [0.911, 0.936]) and is the
only configuration with successful adversary detection (precision
1.0, recall 0.5). Adding trust to fixed topologies (FC + Trust: 0.925,
Star + Trust: 1.009) provides partial benefit for detection but does
not improve error compared to full IGAC. Star topology performs
significantly worse (𝑝 < 10−47 vs. IGAC). These results confirm
that both the learned topology and trust mechanism contribute
independently.

5.7 Training Convergence
Figure 8 shows training dynamics over 60 episodes. Training loss
exhibits high variance across episodes (range 0.28–0.70) due to
the stochastic nature of partial observations and Gumbel-Sigmoid
sampling, but validation error on held-out episodes remains stable
around 0.67–0.69 throughout training. The total wall-clock time
for 60 training episodes is under 0.1 seconds, demonstrating the
computational efficiency of analytical gradient computation. The
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Figure 8: Training convergence over 60 episodes. Training
loss (per-episode MSE) shows stochastic variation while val-
idation error remains stable, indicating rapid convergence
without overfitting.

stability of validation error indicates that the model converges
quickly and does not overfit despite continued training.

6 DISCUSSION
Topology Adaptation with Hard Sparsity. Unlike soft relaxations

where nearly all edges remain weakly active, IGAC’s hard binary
edge sampling via straight-through estimation produces genuinely
sparse graphs with 53.7% of edges inactive. Communication cost
directly reflects the number of active edges, providing a faithful
measure of communication overhead. The learned topology’s non-
trivial clustering coefficient (0.677) suggests it discovers meaningful
agent groupings rather than random sparsification.

Byzantine Baselines and Honest Assessment. Our evaluation re-
veals that classical Byzantine-resilient aggregationmethods (trimmed
mean, coordinate-wise median) outperform all attention-based
methods at high adversary fractions. This is expected: these meth-
ods are specifically designed to discard statistical outliers and have
theoretical robustness guarantees [18]. IGAC’s advantage is complementary—
it provides adversary detection through trust thresholding, not just
robustness through aggregation. A practical system would benefit
from combining both approaches.

Personalized Trust and Detection Difficulty. The trust mechanism
updates each agent 𝑖’s trust in 𝑗 proportionally to how much 𝑖

relied on 𝑗 (measured by attention weight). This personalization
ensures trust reflects actual communication patterns. However, de-
tection difficulty varies substantially across adversary types: IGAC
achieves perfect detection for random adversaries but zero detection
for mimic adversaries that closely imitate honest behavior. This
highlights the fundamental difficulty of detecting sophisticated
attacks in distributed systems.

Training vs. Evaluation Protocol. We adopt a rigorous two-phase
protocol: projection parameters are trained via SGD with analytical
gradients on reconstruction MSE during training episodes, then
frozen for evaluation on held-out data. Trust may continue updat-
ing during evaluation (an online adaptation), but this is clearly
separated from parameter learning and noted in each experiment.

Limitations. Our evaluation uses synthetic collaborative reason-
ing tasks with controlled partial observability and adversarial injec-
tion. While analytical gradients provide exact computation through
the multi-round attention mechanism, the bilinear edge scoring and

Gumbel-Sigmoid sampling introduce additional parameters that re-
quire careful tuning. The current convergence analysis shows rapid
training (under 0.1s for 60 episodes) but with high per-episode
variance, suggesting that more sophisticated optimization (e.g.,
adaptive learning rates, larger batch sizes) could improve stability.
Transferring to real-world LLM-based multi-agent systems requires
addressing variable-length natural language messages, the com-
putational cost of LLM inference, and the non-differentiability of
discrete text generation.

7 CONCLUSION
We introduced IGAC, a framework for learning adaptive, inter-
pretable collaboration policies in multi-agent systems. Through
bilinear edge scoring with Gumbel-Sigmoid sampling and straight-
through estimation, analytically-trained attention message passing,
and personalized counterfactual trust scoring, IGAC simultaneously
addresses the open challenges of topology adaptation, interpretabil-
ity, and adversarial robustness identified by Wei et al. [16]. Across
seven experiments with paired statistical testing, IGAC reduces
communication by 54% (𝑝 < 0.001) while maintaining competitive
accuracy, detects adversarial agents via trust thresholding across
three adversary types, and produces interpretable sparse topologies
with meaningful graph structure. Classical Byzantine-resilient ag-
gregation outperforms attention-based methods at high adversary
fractions, suggesting that combining learned topology with robust
aggregation is a promising direction. Future work will extend IGAC
to natural language message spaces and evaluation on LLM-based
agent systems with real-world reasoning tasks.

8 ETHICAL CONSIDERATIONS
All experiments use exclusively synthetic data generated program-
matically; no human subjects, personal data, or informed consent
are involved. The adversarial robustness analysis studies attack
models (random, bias, mimic) to improve defensive detection ca-
pabilities, though we acknowledge the dual-use potential of char-
acterizing adversary strategies. Trust-based autonomous decision-
making in multi-agent systems raises concerns about accountabil-
ity in high-stakes settings; IGAC’s interpretability features—sparse
binary topology and peaked attention weights—are specifically
designed to support human oversight by making communication
patterns auditable. The framework operates on synthetic numerical
states and does not encode or amplify social biases.

9 REPRODUCIBILITY
All experiments use fixed random seeds (np.random.default_rng(42))
for deterministic data generation and model initialization. Com-
plete hyperparameter specification is provided in Section 4: 𝑁=6
agents, 𝐷=16 state dimensions, observation fraction 𝑝=0.4, noise
𝜎=0.1, 𝑅=3 communication rounds, 30 training and 50 evaluation
episodes. All seven experiments complete in under 10 seconds to-
tal on a single CPU core with no GPU required. Results are fully
deterministic given the same random seed. Code and data will be
made publicly available upon acceptance.
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