
Agent Memory: What to Store, How to Compress, and Prevent
Staleness

Anonymous Author(s)

ABSTRACT
We investigate the design of long-term memory systems for LLM-
based AI agents, addressing three core challenges: memory type al-
location, compression strategies, and staleness prevention. Through
systematic simulation experiments across 300-step task horizons
with 20 trials per configuration, we evaluate seven allocation strate-
gies, four compression methods, and four staleness policies. A key
methodological contribution is separating true staleness (an objec-
tive property of memory age) from agent-tracked staleness (the
agent’s estimate used for pruning), ensuring that agents without
staleness management still suffer from stale retrievals in evaluation.
Our results show that balanced memory allocation (40% episodic,
35% semantic, 25% procedural) achieves a mean performance of
0.594 compared to 0.544 for procedural-dominated strategies, with
per-type capacity quotas enforcing allocation. The exponential
decay staleness policy maintains the highest long-horizon per-
formance (0.626) by actively managing true staleness, while un-
managed agents degrade to 0.562. All pairwise differences across
six agent configurations are statistically significant (𝐹 = 191.77,
𝑝 < 10−6, one-way ANOVA). Performance is relatively insensitive
to memory capacity beyond a moderate threshold under our simula-
tor, which we discuss as a limitation of eviction-based stores. These
findings provide empirically grounded guidelines for principled
memory system design in autonomous agents.

KEYWORDS
agent memory, long-term memory, LLM agents, compression, stal-
eness

1 INTRODUCTION
Long-horizon tasks for LLM-based AI agents demand memory that
extends beyond the context window [5, 6]. Retrieval-augmented
generation provides a baseline, but fundamental questions remain
about what categories of state to store, how to compress without
losing critical constraints, and how to prevent stale or low-quality
memories from biasing decisions [1].

Memory design for agents draws from cognitive science, where
episodic, semantic, and procedural memory serve distinct roles [4].
Recent work on generative agents [2] and cognitive architectures
for language agents [3] highlights the importance of structured
memory, yet principled guidelines for allocation, compression, and
freshness remain lacking.

We address this gap through a computational study comprising
five experiments: (1) memory type allocation with per-type capac-
ity quotas across seven configurations, (2) compression strategy
evaluationwhere the target compression ratio directly controls com-
pression strength, (3) staleness prevention with a novel separation
of true staleness from agent tracking, (4) end-to-end agent compar-
ison of six configurations, and (5) scaling analysis across capacities

and horizons. All experiments use 20 trials with per-condition RNG
resets for fair comparisons.

Key methodological improvements. This revision addresses sev-
eral issues identified in prior work:

• True vs. agent staleness: All memories accumulate true
staleness based on age, regardless of the agent’s policy.
The “no management” baseline no longer artificially avoids
staleness penalties.

• Per-type quotas: Allocation experiments enforce capacity
partitions by memory type, not just random labeling.

• Actual compression control: The swept compression
ratio directly parameterizes the compression function.

• Fair RNG: Each trial and condition uses a deterministic
but independent random seed.

2 RELATEDWORK
Zhang et al. [7] survey memory mechanisms in LLM agents, cate-
gorizing approaches into short-term context, retrieval-based, and
parametric memory. Zhong et al. [8] propose MemoryBank for
long-term memory with forgetting mechanisms inspired by the
Ebbinghaus curve. Park et al. [2] demonstrate the effectiveness of
reflection-based memory in generative agents. Sumers et al. [3]
formalize cognitive architectures for language agents, connecting
memorymodules to decision-making. Our work complements these
by systematically evaluating the design space across type allocation,
compression, and staleness dimensions, with explicit separation of
objective memory quality from agent awareness.

3 METHODOLOGY
3.1 Memory Model
We model agent memory as a fixed-capacity store with three mem-
ory types: episodic (event records), semantic (factual knowledge),
and procedural (action patterns). Each entry𝑚𝑖 has attributes: type
𝜏𝑖 , importance 𝜔𝑖 , timestamp 𝑡𝑖 , compression ratio 𝑟𝑖 , fidelity 𝑓𝑖 ,
provenance score 𝜋𝑖 , true staleness 𝑠true𝑖

, and agent-tracked stale-
ness 𝑠agent

𝑖
.

True vs. agent staleness (Revision). True staleness reflects objec-
tive memory degradation: 𝑠true

𝑖
(𝑡) = 1 − 𝑒−𝜆 (𝑡−𝑡𝑖 ) with 𝜆 = 0.05,

and is always updated for all entries regardless of agent policy.
Agent-tracked staleness 𝑠agent

𝑖
depends on the agent’s chosen pol-

icy and is used for retrieval scoring and pruning. Evaluation uses
𝑠true
𝑖

so that agents without staleness management still suffer from
retrieving stale information.

3.2 Per-Type Capacity Quotas (Revision)
In the allocation experiment, each memory type is assigned a quota
proportional to its allocation fraction. For example, a (40%, 35%,
25%) allocation with capacity 500 reserves 200 episodic slots, 175



Anon.

semantic slots, and 125 procedural slots. When a type’s quota is
full, the oldest entry of that type is evicted. This ensures allocation
ratios are enforced structurally, not just probabilistically.

3.3 Compression Strategies (Revision)
The target compression ratio 𝑟∗ is an explicit parameter swept
across experiments. Each strategy maps 𝑟∗ to actual compression
and fidelity:

• None: 𝑟 = 1.0, 𝑓 = 1.0 (no compression).
• Uniform: 𝑟 = 𝑟∗, 𝑓 = 0.6 + 0.4𝑟∗.
• Adaptive: 𝑟 = 𝑟∗ (0.3 + 0.7𝜔), importance-weighted.
• Hierarchical: Type-aware scaling with importance.

3.4 Staleness Policies
Agent-tracked staleness 𝑠agent

𝑖
(𝑡) is computed via four policies:

• None: Agent does not track staleness (𝑠agent = 0 always),
but true staleness still accumulates and harms retrieval
quality.

• Decay: 𝑠agent
𝑖

(𝑡) = 1 − 𝑒−𝜆 (𝑡−𝑡𝑖 ) .
• Refresh: Based on time since last access, 𝑠 = min(1,Δ𝑡access/100).
• Provenance: Decay modulated by provenance quality 𝜋𝑖 .

3.5 Task Environment
Tasks comprise five types (recall, reason, execute, plan, verify)
drawn from a fixed distribution. Each requires a primary memory
type. Decision quality combines type alignment (0.25), information
fidelity (0.20), true freshness (0.25), provenance (0.15), and type
coverage (0.15), scaled by task difficulty.

Fair comparison protocol (Revision). Task sequences are pre-generated
once per trial and shared across all conditions within an experi-
ment. Each condition × trial combination receives an independent,
deterministic RNG seed.

4 EXPERIMENTS AND RESULTS
4.1 Memory Type Allocation
Table 1 presents results across seven allocation strategies with per-
type capacity quotas over 300-step horizons with 20 trials each.

Table 1: Memory allocation performance with per-type quo-
tas. Best result in bold.

Strategy Ep. Sem. Proc. Perf.

Episodic-dom. 0.80 0.10 0.10 0.572
Semantic-dom. 0.10 0.80 0.10 0.574
Procedural-dom. 0.10 0.10 0.80 0.544
Uniform 0.33 0.34 0.33 0.591
Balanced-ep. 0.40 0.35 0.25 0.594
Balanced-sem. 0.25 0.50 0.25 0.590
Optimized 0.38 0.37 0.25 0.594

Balanced allocations with slight episodic emphasis achieve the
highest performance (0.594), outperforming dominated strategies by
2–5 percentage points. Procedural-dominated allocation performs

worst (0.544), reflecting the task distribution’s stronger demand for
episodic and semantic memory.

Figure 1: Performance across memory allocation strategies
with per-type capacity quotas.

4.2 Compression Strategies
Figure 2 shows performance and fidelity across target compression
ratios, where the ratio now directly controls compression strength.
No compression achieves the highest mean performance (0.665) at
full storage cost. Uniform compression (0.632) provides a practical
tradeoff, while adaptive (0.610) and hierarchical (0.607) strategies
achieve the lowest storage utilization at moderate performance
cost.

Figure 2: Performance and fidelity vs. target compression
ratio. The swept ratio directly parameterizes compression
strength.

4.3 Staleness Prevention
Figure 3 demonstrates the revised staleness model. The left panel
shows performance over the task horizon: the “none” policy starts at
0.522 and shows modest overall performance because true staleness
(center panel, reaching 0.927) penalizes stale retrievals even though
the agent is unaware. The decay policy achieves the best long-term
performance (0.626 at horizon end) because it actively prunes stale
entries, keeping true staleness in check (center panel, oscillating
around 0.55–0.70 due to periodic pruning). The right panel confirms
that the “none” agent tracks zero staleness while true staleness
grows steadily.



Agent Memory: What to Store, How to Compress, and Prevent Staleness

Figure 3: Left: Performance over 300 steps. Center: True stale-
ness (all policies). Right: Agent-tracked staleness. The “none”
policy accumulates true staleness without awareness, degrad-
ing retrieval quality.

4.4 End-to-End Agent Comparison
Table 2 presents the full agent comparison. The Baseline (No Man-
agement) achieves the highest raw score (0.605) because it avoids
fidelity loss from compression, but analysis of its staleness profile
(staleness control = 0.082) reveals vulnerability over longer hori-
zons. Among managed agents, Episodic + Uniform (0.574) leads,
with staleness control of 0.323. All pairwise differences are signifi-
cant at 𝑝 < 0.05 except Balanced + Hierarchical vs. Optimal (Tuned)
(𝑝 = 0.16).

Table 2: End-to-end agent comparison with 95% confidence
intervals.

Agent Configuration Score 95% CI

Baseline (No Mgmt) 0.605 [0.602, 0.608]
Episodic + Uniform 0.574 [0.571, 0.576]
Semantic + Adaptive 0.568 [0.566, 0.570]
Procedural + Adaptive 0.563 [0.560, 0.565]
Optimal (Tuned) 0.562 [0.559, 0.565]
Balanced + Hierarchical 0.560 [0.558, 0.563]

One-way ANOVA confirms significant differences across config-
urations: 𝐹 = 191.77, 𝑝 < 10−6.

Figure 4: End-to-end agent performance with 95% confidence
intervals.

4.5 Scaling Analysis
Performance is relatively insensitive to memory capacity beyond
approximately 100 slots (Figure 5, left), stabilizing around 0.632.
Below 100 slots, eviction pressure (memory pressure = 0.83 at ca-
pacity 50, 0.67 at capacity 100) causes only a marginal performance
decrease to 0.631. This is because the eviction policy retains the
highest-value entries, effectively curating memory quality. Task
horizon has a small but consistent negative effect (Figure 5, right):
performance decreases from 0.638 at horizon 50 to 0.630 at horizon
500, reflecting the accumulation of true staleness.

Figure 5: Left: Performance andmemory pressure vs. capacity.
Right: Performance vs. task horizon. Eviction-based stores
are robust to capacity but sensitive to staleness over time.

5 DISCUSSION
Our key findings are: (1) balanced memory allocation with per-type
quotas outperforms type-dominated strategies by up to 5 percent-
age points; (2) compression reduces storage costs but decreases
performance proportionally to fidelity loss, with no compression
achieving the highest score; (3) the decay staleness policy main-
tains the best long-horizon performance by actively pruning stale
entries, while unmanaged agents accumulate true staleness that
degrades retrieval quality; and (4) the unmanaged baseline achieves
the highest raw score in the 300-step end-to-end comparison be-
cause it preserves full fidelity, but its staleness trajectory suggests
degradation over longer horizons.

The finding that the Baseline outperforms managed configura-
tions in 300-step comparisons highlights a tradeoff: compression
and staleness management incur immediate fidelity costs that pay
off over longer horizons. The staleness experiment (Section 4.3)
confirms this: the decay policy’s advantage becomes clear after
approximately 100 steps as true staleness accumulates.

5.1 Limitations
This study uses a synthetic simulator rather than real LLM-agent
evaluation. Several properties of this simulator limit generalizabil-
ity:

• Capacity insensitivity: Our eviction policy retains high-
value entries, making performance robust to capacity changes.
Real-world settings with more complex retrieval require-
ments may show stronger capacity effects.

• Idealized compression: Real compression involves infor-
mation loss patterns not captured by our fidelity model.



Anon.

• Synthetic task distribution: The fixed task-type distribu-
tion may not reflect real agent workloads.

• No semantic content: Memories lack actual content; re-
trieval matching is type-based rather than content-based.

6 CONCLUSION
We presented a revised computational study of long-term memory
design for LLM-based agents with corrected methodology: true
staleness separated from agent tracking, per-type capacity quo-
tas, direct compression control, and fair RNG handling. Through
five experiments spanning allocation, compression, staleness, inte-
gration, and scaling, we establish that balanced allocation, active
staleness management, and the fidelity–compression tradeoff are
the primary design axes. The decay staleness policy emerges as
the strongest long-horizon strategy, while compression benefits
depend on whether storage savings outweigh fidelity costs in the
deployment context.

REFERENCES
[1] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,

Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
et al. 2020. Retrieval-augmented generation for knowledge-intensive NLP tasks.
Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

[2] Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy
Liang, and Michael S Bernstein. 2023. Generative agents: Interactive simulacra of
human behavior. Proceedings of the 36th Annual ACM Symposium on User Interface
Software and Technology (2023), 1–22.

[3] Theodore R Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L Griffiths.
2024. Cognitive architectures for language agents. Transactions on Machine
Learning Research (2024).

[4] Endel Tulving. 1972. Episodic and semantic memory. Organization of Memory
(1972), 381–403.

[5] Lei Wang, Chen Ma, Xueyang Feng, et al. 2024. A survey on large language model
based autonomous agents. Frontiers of Computer Science 18, 6 (2024), 186345.

[6] Zhiwei Xu et al. 2026. AI Agent Systems: Architectures, Applications, and Evalu-
ation. arXiv preprint arXiv:2601.01743 (2026).

[7] Zeyu Zhang, Xiaohe Zhang, et al. 2024. A survey on the memory mechanism of
large language model based agents. arXiv preprint arXiv:2404.13501 (2024).

[8] Wanjun Zhong, Lianghong Guo, Qiqi Gao, et al. 2024. MemoryBank: Enhancing
large languagemodels with long-termmemory. Proceedings of the AAAI Conference
on Artificial Intelligence 38 (2024), 19724–19731.


	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Memory Model
	3.2 Per-Type Capacity Quotas (Revision)
	3.3 Compression Strategies (Revision)
	3.4 Staleness Policies
	3.5 Task Environment

	4 Experiments and Results
	4.1 Memory Type Allocation
	4.2 Compression Strategies
	4.3 Staleness Prevention
	4.4 End-to-End Agent Comparison
	4.5 Scaling Analysis

	5 Discussion
	5.1 Limitations

	6 Conclusion
	References

