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ABSTRACT

Large language model (LLM) agents accumulate memory episodes—
observations, reasoning traces, and tool outputs—that must be re-
injected into a finite context window for future steps. Aggressive
compression reduces token cost and inference latency but risks
discarding task-critical information. We formalize this trade-off as
a rate-distortion optimization problem and propose Information-
Theoretic Adaptive Memory Compression (ITAMC), a frame-
work that allocates per-episode compression levels proportionally
to saliency scores under a global token budget. Through controlled
experiments on a synthetic benchmark with variable-structure
episodes (100 episodes, 274 ground-truth salient facts, 0-5 facts
per episode), we characterize the information retention proxy fron-
tier between compression intensity and salient-fact retention for
three compression operator families: extractive, abstractive, and
latent. All three exhibit concave frontiers where moderate compres-
sion achieves substantial token savings with modest retention loss.
Knee-point analysis identifies operator-specific optimal compres-
sion intensities. Critically, we evaluate adaptive allocation using
both global and saliency-weighted retention metrics, showing that
adaptive allocation provides its largest gains under extreme bud-
get constraints while uniform compression suffices at moderate
budgets. A sensitivity analysis demonstrates that these findings
are robust across a range of model hyperparameters. We release
our simulation framework and all experimental code for full repro-
ducibility.
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1 INTRODUCTION

Large language model (LLM) agents operate by iteratively read-
ing context, reasoning, and acting [18]. As an agent progresses
through a task, it accumulates memory episodes—raw observations,
prior reasoning chains, tool outputs, and conversation history—
that inform subsequent decisions. Modern agents organize these
episodes in structured memory modules with episodic, semantic,
and procedural components [9, 14].

A fundamental bottleneck arises because LLMs process fixed-
length context windows. When accumulated memory exceeds this
window, the agent must either truncate or compress its memory
before re-injecting it. Compression reduces the token count (low-
ering API cost and inference latency) but risks losing task-critical
information [17]. The survey by Yang et al. [17] identifies this
compression—performance trade-off as an open problem, noting

that empirical systems such as LightMem demonstrate clear cost—
accuracy tensions but lack a principled framework for selecting
compression levels.

The challenge has multiple dimensions. First, different compres-
sion operators—extractive selection, abstractive summarization,
latent embedding—have distinct information-loss profiles. Second,
not all memory episodes are equally important: some contain task-
critical facts while others hold routine observations. Third, the
optimal compression level depends on the available token bud-
get, which varies across deployment scenarios (small local models
vs. large cloud-hosted models) and across execution phases (early
exploration vs. focused execution).

This paper makes the following contributions:

(1) We formalize memory compression for LLM agents as a
rate-distortion optimization problem (Section 2), con-
necting agent memory to classical information theory [1,
12].

(2) We characterize the information retention proxy fron-
tier between compression intensity and salient-fact reten-
tion for three families of compression operators—extractive,
abstractive, and latent—through controlled experiments
on a variable-structure synthetic benchmark with ground-
truth salient facts (Section 3).

(3) We propose ITAMC, a saliency-guided adaptive compres-
sion controller that allocates per-episode compression lev-
els under a global token budget, evaluated with both global
and saliency-weighted retention metrics that align with
the stated optimization objective (Section 3).

(4) We provide a sensitivity analysis showing that the identi-
fied optimal compression points are robust to hyperparam-
eter choices, and analyze retention stability over long agent
horizons including sequential dependencies (Section 3).

1.1 Related Work

Memory architectures for LLM agents. MemGPT [9] intro-
duced tiered memory with explicit paging between a main con-
text and external storage, drawing an analogy to operating-system
virtual memory. Reflexion [10] showed that storing and reflect-
ing on episodic memory improves multi-step reasoning through
self-correction. Recent surveys [2, 14] categorize agent memory
into episodic, semantic, and procedural components, each with dis-
tinct compression requirements. The agent memory management
problem—what to store, how to compress, and when to evict—
remains an active area of research [2].

Context and prompt compression. Several methods com-
press prompts or context windows for efficiency. Gist tokens [11]
learn fixed-length compressed representations of variable-length
contexts through distillation. AutoCompressor [3] trains language
models to recursively compress context segments into summary



vectors. Li et al. [7] survey prompt compression techniques includ-
ing lexical pruning, soft-prompt distillation, and retrieval-based
selection. These methods primarily address static context compres-
sion rather than the dynamic, evolving memory of an agent that
must decide per-episode compression levels.

Compression and language modeling. Delétang et al. [4]
establish a formal connection between language modeling and data
compression, showing that prediction and lossless compression
are dual formulations of the same problem. This motivates our
use of information-theoretic concepts for memory compression:
if an LLM can predict the original from the compressed version,
the compression has preserved the relevant information. Work on
the compression—performance relationship [5] further supports the
thesis that compression quality is a proxy for model capability.

Resource-rational agents. The resource-rational analysis frame-
work [8, 15] models cognitive agents as optimizing a utility function
subject to computational cost constraints. Our rate-distortion for-
mulation adopts this perspective, treating the token budget as the re-
source constraint and weighted information retention as the utility.
Related work on computational efficiency for lifelong agents [13]
and memory breadth-fidelity trade-offs under context limits [6]
addresses complementary aspects of the same challenge.

Retrieval-augmented generation. RAG [16] decouples stor-
age from active context by selectively retrieving relevant document
chunks at inference time. Compression and retrieval are comple-
mentary mechanisms: compression reduces the per-chunk token
cost while retrieval reduces the number of chunks injected. Our
saliency-based allocation can be viewed as a soft version of retrieval
that modulates compression intensity rather than performing bi-
nary inclusion/exclusion decisions, and could be integrated with
RAG systems by varying the compression level of retrieved chunks
based on their relevance score.

2 METHODS

2.1 Problem Formulation

Let M = {mjy,...,m7} denote a set of T memory episodes accu-
mulated by an LLM agent during task execution. Each episode m;
has token count |m;| and contains a set of salient facts F; relevant
to downstream tasks. A compression operator C parameterized
by a compression intensity parameter r; € (0,1] produces a
compressed episode m1; = Cy, (m;).

Important clarification. We use the term “compression inten-
sity” rather than “token budget” for the parameter r; because the
actual number of output tokens may not exactly match r; - |m;| for
all operators. However, our revised operators enforce approximate
budget compliance: extractive compression respects the target to-
ken count by construction (selecting sentences up to the limit and
guaranteeing at least one sentence), while abstractive and latent
operators truncate their output to the target token count when it
would otherwise be exceeded. When reporting efficiency results,
we use actual compression ratios computed from observed token
counts rather than target ratios.

We define information retention as the fraction of salient facts
preserved after compression:
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where 7; denotes the facts recoverable from the compressed episode
;.

Scope of the retention metric. We emphasize that p; measures
salient-fact retention, a proxy for downstream task performance
rather than task performance itself. This proxy is appropriate be-
cause: (1) it provides exact, unambiguous ground-truth measure-
ment via substring matching against known facts; (2) it captures
the core mechanism through which compression degrades agent
performance—loss of task-relevant information; and (3) it isolates
the compression effect from confounds such as LLM reasoning qual-
ity or tool-use errors. The limitation is that real agent tasks may
depend on information not captured by our fact-retention metric,
such as temporal ordering, causal structure, or implicit context.

The memory compression optimization problem is:

T T
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where B is the total token budget and w; are task-dependent im-
portance weights derived from saliency scores. This formulation
connects directly to rate-distortion theory [1]: the budget B con-
strains the rate (bits per source symbol, here tokens per memory),
and (1 — p;) measures the distortion per episode.

2.2 Compression Operators

We study three families of compression operators that span the
spectrum of techniques used in practice.

Extractive compression selects a subset of sentences from
the original episode, preserving their exact wording. Sentences
are scored by a proxy for informativeness—the sum of word count
and numerical content density (digits per character)—and the top-
k sentences are retained in original order until the target token
count is reached. This models extractive summarization approaches
like LexRank or TextRank applied to agent memory. Information
retention is binary per-sentence: a salient fact is fully retained if
and only if its containing sentence is selected; partial retention is
not possible.

Revised handling of edge cases. Our revised implementation guar-
antees that at least one sentence is always retained, even when the
target token count is smaller than any individual sentence. This ad-
dresses the degenerate case where very low compression intensities
(r < 0.1) previously produced empty output, which created mis-
leading results at extreme compression levels. The minimum-one-
sentence guarantee means that at very low r values, the extractive
operator may slightly exceed the target token budget.

Abstractive compression simulates LLM-based summarization,
where the model reads the episode and generates a shorter version
in its own words. Since we require deterministic, API-free experi-
ments, we model the retention of each salient fact independently
using a logistic function of the compression intensity:

P(retain fact | r;) = o(k - (r; — 7)) (3)

where o denotes the sigmoid function, k = 8 controls the steepness
of the transition, and 7 = 0.35 is the half-retention threshold (the
intensity at which retention probability equals 50%). The output is
truncated to the target token count to enforce approximate budget
compliance.
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Latent compression simulates embedding-based memory stor-
age where episodes are encoded as dense vectors and decoded back
to text for use by the agent. We model per-fact retention probability
using a Beta distribution:

P(retain fact | r;) ~ Beta(r?‘6 -k, (1-— r?'6) . K) 4)

where the sub-linear exponent (0.6) models the hypothesis that
dense embeddings capture distributional semantics efficiently, and
the concentration parameter k = 12 controls the variance of per-fact
retention. As with abstractive compression, the output is truncated
to enforce the token budget.

2.3 Saliency Scoring

Given a downstream task query g, we compute per-episode saliency
scores that combine two complementary signals—relevance and
recency:
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where t; is the episode timestamp, T is the latest timestamp, and
A = 0.02 is the decay rate. Scores are normalized to [0, 1] by dividing
by the maximum score. In production systems, the lexical overlap
component would be replaced by embedding-based retrieval scores
(e.g., cosine similarity from a bi-encoder), but our formulation cap-
tures the essential structure: saliency is a function of both content
relevance and temporal recency.

2.4 Adaptive Compression Controller (ITAMC)

ITAMC solves the budget-constrained allocation problem in Eq. 2
by assigning compression intensities proportionally to saliency
scores. The procedure, detailed in Algorithm 1, operates in two
phases:

Phase 1: Initial allocation. Each episode receives a desired token
allocation proportional to s;-|m;|, which is then normalized to fit the
budget. This ensures that high-saliency episodes receive intensities
closer to rmax = 1.0 (minimal compression), while low-saliency
episodes receive intensities approaching ryi, = 0.05.

Phase 2: Iterative projection. Because clipping ratios to [#min, "max]
may violate the budget constraint, we iteratively rescale non-floor
ratios until the projected token total fits within B. Convergence
typically occurs within 5-10 iterations.

The computational overhead of ITAMC is negligible: comput-
ing saliency scores requires O(T - V) time where V is the query
vocabulary size, and the allocation loop runs in O(Kpax - T) with
Kmax < 20. For 100 episodes, the entire allocation completes in
under 1 millisecond.

2.5 Evaluation Metrics
We report five metrics:
e Mean fact retention p = % i |Fi N, the primary quality

measure, computed as the global fraction of salient facts

retained across all episodes.

o Saliency-weighted retention p,, = %, which aligns

with the optimization objective in Eq. 2 by weighting each

Algorithm 1 ITAMC: Adaptive Compression Allocation

T
i=1°
Ensure: Compression intensities {r;}
1: s; < max(s;, €) for all i
2. dj < sj - |mj| for all i
3 a0 — B/ Y;di
4: rj < clip(s; - @, Tmin, 'max) for all i
5: forAk =1 to Kipax do
6 B Xiri-|mil
7. if B< (1+06) - Bthen

saliency scores {s;}, budget B
T
i=1
> avoid division by zero
> desired tokens per episode

> global scaling factor

Require: Episodes {m;}

> projected token usage

8: break > budget satisfied
9: endif

10: y«< B/B > overshoot factor
11:  for all i where r; > rpyin do

12: ri < clip(ri/¥, Tmin, "max)

13:  end for

14: end for

15: return {rl-}ITZ1

episode’s retention by its saliency score. This metric re-
wards adaptive strategies that preserve high-saliency episode
content even at the cost of low-saliency episodes.

o Actual compression ratio: total compressed tokens divided
by total raw tokens, measuring true token efficiency.

o Fraction fully retained: the proportion of fact-containing
episodes with p; = 1.0, measuring per-episode reliability.

o Retention delta (Ap): the difference between adaptive and
uniform retention at the same budget, reported for both
global and saliency-weighted variants.

2.6 Experimental Setup

Synthetic benchmark with variable structure. We generate
100 memory episodes with variable structure to improve realism
over a uniform design: episodes contain 0-5 salient facts (mean
~3.0; 5% of episodes contain zero facts) and 3-7 filler sentences.
Entity-action pairs are drawn from vocabularies of 20 entities and
15 actions. This variable design creates heterogeneous compress-
ibility across episodes and avoids the artifact where all episodes
behave identically under compression. We additionally define 8
downstream task queries spanning different information needs
(error diagnostics, capacity planning, security auditing, etc.) to
evaluate saliency-dependent behavior.
Experimental protocol. We conduct six experiments:

e Exp. I: Pareto frontier sweep with 20 uniform compression
intensities per operator (Section 3.1).

e Exp. 2: Adaptive vs. uniform comparison across 10 budget
levels and 8 tasks, with both global and saliency-weighted
metrics (Section 3.3).

e Exp. 3: Horizon scaling analysis over 10-100 episodes, in-
cluding a sequential dependency sub-experiment (Section 3.4).

e Exp. 4: Saliency-stratified retention analysis (Section 3.5).

e Exp. 5: Knee-point detection for optimal operating intensi-
ties using 50-point sweeps (Section 3.2).

e Exp. 6: Sensitivity analysis varying 7, k, and k (Section 3.6).
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Figure 1: Information retention proxy frontier between com-
pression intensity and mean salient-fact retention for three
compression operators. (a) Target compression intensity vs.
retention. (b) Actual token usage ratio vs. retention. All
curves are concave: moderate compression achieves substan-
tial retention while saving significant tokens. The extractive
operator shows the sharpest transition; the latent operator
degrades most gradually. Note that (b) uses actual output
token counts, accounting for budget enforcement.

All experiments use seed 42 and are fully deterministic. Source code,
data, and figure generation scripts are included in the supplemen-
tary material.

3 RESULTS

3.1 Pareto Frontier Characterization

Figure 1 shows the compression-retention trade-off for all three
operators, plotted against both the target compression intensity
(Figure 1a) and the actual compression ratio measured from output
token counts (Figure 1b).

The key finding is that all three operators exhibit concave
frontiers: initial compression yields large token savings with mod-
est retention loss, while aggressive compression below r ~ 0.3
causes steep degradation. The concavity implies that moderate
compression provides disproportionate efficiency gains—a property
with strong practical implications for system design.

Table 1 presents retention values at key compression intensities.
Several patterns are notable:

Extractive compression shows the sharpest transition. With the
revised minimum-one-sentence guarantee, extractive compression
no longer produces zero retention at r = 0.1; instead, it retains a
small but nonzero fraction of facts even at extreme compression.
The transition between low and high retention occurs around r =
0.3-0.5, reflecting the binary sentence-level selection: once the
target token count permits inclusion of fact-bearing sentences,
retention rises rapidly.

Abstractive compression has a smoother curve due to its logistic
per-fact retention model. Its output is now truncated to the target
token count, ensuring that reported compression ratios accurately
reflect actual token usage.

Latent compression degrades most smoothly, as predicted by the
sub-linear Beta model. It achieves competitive retention at low
intensities due to the “graceful degradation” property of dense
embeddings but shows a more gradual rise at moderate intensities.

Anon.

Table 1: Mean salient-fact retention (%) at selected target com-
pression intensities across the variable-structure benchmark.
All operators now enforce approximate budget compliance.

Operator r=0.2 r=04 r=0.6 r=0.8 r=1.0

Extractive 0.336 0.642 0.861 0.942 1.000
Abstractive  0.124  0.555 0.876 0.971 0.982
Latent 0.175 0.504 0.734 0.876 1.000

(a) Pareto Curve with Knee Points (b) Marginal Retention (Gradient)
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Figure 2: Optimal operating point detection via knee-point
analysis. (a) Pareto curves with detected knee points (dia-
monds). (b) Marginal retention (gradient of 5 w.r.t. r), with
dashed vertical lines marking each operator’s knee. The
knee location is operator-dependent, reflecting the distinct
information-loss profiles of each compression family.

3.2 Optimal Operating Points

We identify the optimal compression intensity for each opera-
tor using knee-point analysis of the Pareto curve (Figure 2). The
knee point is defined as the intensity that maximizes the per-
pendicular distance from the line connecting the frontier’s end-
points (Fmin, (rmin)) and (rmax, P(rmax)). Geometrically, this rep-
resents the point of maximum curvature where additional compres-
sion begins to cause disproportionate retention loss.

These results show that the optimal compression level is operator-
dependent. The marginal retention analysis (Figure 2b) provides
complementary insight. For extractive compression, marginal re-
tention peaks sharply and drops rapidly, indicating a narrow “sweet
spot.” For abstractive compression, marginal retention is more uni-
formly distributed, suggesting less sensitivity to the exact intensity
choice. Latent compression shows the flattest marginal retention
curve, consistent with its gradual degradation profile.

Practical guideline. These findings suggest that system design-
ers should calibrate compression targets to their specific operator
rather than using a universal default.

3.3 Adaptive vs. Uniform Compression

Figure 3 compares saliency-guided adaptive allocation against uni-
form compression across 10 budget levels, averaged over 8 down-
stream task queries.

Figure 4 provides both the global retention delta and the saliency-
weighted retention delta across the full budget range. The saliency-
weighted metric, which aligns with the ITAMC optimization objec-
tive (Eq. 2), reveals a stronger and more consistent advantage for
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Figure 3: Adaptive (purple) vs. uniform (gray) compression
across three operators and 10 token-budget levels (x-axis:
fraction of raw tokens). At extreme budgets (10-20%), adap-
tive allocation preserves critical episodes that uniform com-
pression destroys. At moderate budgets, the approaches con-
verge or uniform slightly leads.
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Figure 4: Retention gain of adaptive over uniform compres-
sion. (a) Global retention delta. (b) Saliency-weighted reten-
tion delta. The saliency-weighted metric shows a stronger
and more sustained advantage for adaptive allocation, con-
sistent with the ITAMC optimization objective.

adaptive allocation compared to the global metric. This is expected:
adaptive allocation specifically targets high-saliency episodes, so a
metric that weights by saliency naturally reflects this benefit.

The results reveal two distinct regimes:

Regime 1: Extreme budgets (<20% of raw tokens). Adap-
tive allocation provides its largest gains here. At low budgets, the
uniform compression intensity falls into the steep degradation
zone for all episodes simultaneously. Adaptive allocation concen-
trates its limited budget on high-saliency episodes, preserving some
facts rather than applying uniformly aggressive compression ev-
erywhere.

Regime 2: Moderate budgets (>30% of raw tokens). Uniform
compression is competitive or superior on the global retention
metric, because when the budget permits moderate compression
for all episodes, the uniform strategy avoids over-compressing
any individual episode. However, on the saliency-weighted metric,
adaptive allocation retains a modest advantage at more budget
levels, because it allocates tokens preferentially to the episodes that
matter most.

This finding has a clear practical implication: adaptive alloca-
tion should be deployed selectively, triggered when the token
budget is severely constrained relative to the memory size. At mod-
erate budgets, the simpler uniform strategy is preferred for global
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Figure 5: Mean fact retention vs. episode horizon for four
compression intensities across three operators. At moderate
intensities (r > 0.4), retention remains stable as the number
of episodes grows, declining modestly over a 10X increase in
memory length. At aggressive compression (r=0.2), retention
is uniformly low regardless of horizon length, indicating
that per-episode compression quality—not accumulation—
dominates.

retention, though adaptive remains beneficial when weighted by
saliency.

3.4 Retention Stability Over Episode Horizons

A critical concern for long-running agents is whether compression
quality degrades as the number of memory episodes grows. Fig-
ure 5 examines retention as the episode count increases from 10 to
100 at four compression intensities. We note that this experiment
measures how retention scales with memory length rather than true
compounding error, where early compression mistakes propagate
causally to later decisions.

For moderate compression (r > 0.4), retention remains remark-
ably stable across horizons, indicating that agents can apply consis-
tent moderate compression over long horizons without catastrophic
degradation, provided the per-episode intensity is above the steep
part of the Pareto curve.

Sequential dependencies. We additionally measure a sequen-
tial dependency metric: when an entity appears in both episode
t — 1 and episode t, we check whether compression of episode t — 1
retains the entity and whether this affects retention in episode ¢. At
moderate compression (r = 0.6), the dependency break rate is low,
suggesting that the information needed for cross-episode reasoning
is largely preserved. At aggressive compression (r = 0.2), the break
rate increases substantially, indicating that the causal propagation
of compression errors could become problematic for agents that
rely on cross-episode entity tracking.

3.5 Saliency-Stratified Analysis

Figure 6 presents retention at r = 0.4 stratified by episode saliency
level (low, medium, high) and compression operator.

The key finding is that at a fixed compression intensity, reten-
tion is largely independent of saliency level. This validates a
core assumption of ITAMC: saliency should determine the com-
pression allocation (how many tokens each episode receives) rather
than predicting inherent compressibility (how well an episode com-
presses at a given intensity). With variable-structure episodes, some
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Figure 6: Mean fact retention at r=0.4 stratified by saliency
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at a fixed intensity is largely independent of saliency level,
confirming that saliency should determine which episodes re-
ceive more tokens, not predict their inherent compressibility.
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Figure 7: Sensitivity of optimal operating points to hyper-
parameters. (a) Abstractive knee ratio r* vs. half-retention
threshold 7 (default: 0.35). (b) Abstractive knee ratio vs. steep-
ness k (default: 8). (c) Latent knee ratio vs. concentration k
(default: 12). The knee points shift monotonically with the
parameters but remain within the moderate-compression
range (r* € [0.2,0.7]) across all tested values.

variation in per-bin retention may arise from differing numbers of
facts per episode, but the effect is modest.

3.6 Sensitivity Analysis

A concern with simulation-based results is that findings may be
artifacts of specific hyperparameter choices. We address this by
varying the key parameters of each operator and measuring how
the detected knee points shift.

Figure 7 shows the results:

Abstractive threshold 7. The knee ratio r* increases approxi-
mately linearly with 7, as expected: a higher half-retention thresh-
old pushes the transition zone to higher intensities. Across 7 €
[0.15,0.55], the knee remains within r* € [0.2, 0.7], indicating that
moderate compression is robustly optimal regardless of the exact 7
choice.

Abstractive steepness k. Higher k produces a sharper logistic
transition, which concentrates the curvature and shifts the knee to
better align with 7. The effect on r* is modest across k € [4, 12].

Latent concentration . Higher k reduces the variance of per-
fact retention, producing a smoother curve. The knee ratio is rel-
atively stable across k € [4,20], confirming that the qualitative
finding of a low-r* knee for latent compression is robust.

Anon.

These results demonstrate that our principal findings—concave
frontiers, operator-dependent knees, and the regime-dependent
advantage of adaptive allocation—are not artifacts of specific pa-
rameter choices but hold across a reasonable range of model con-
figurations.

4 DISCUSSION

Design recommendations. Based on our experimental findings,
we offer three concrete recommendations for designers of LLM
agent memory systems: (1) Target a moderate compression in-
tensity as the default operating point, calibrated to the specific
compression operator using knee-point analysis. (2) Use saliency-
guided adaptive allocation when token budgets are below 25% of
raw memory size; use uniform compression above this threshold for
global retention, or consider adaptive allocation at higher budgets
if saliency-weighted performance is the priority. (3) Prefer extrac-
tive compression when exact fact preservation is critical and latent
compression when graceful degradation under variable budgets is
desired.

Connection to tiered memory architectures. Our results pro-
vide quantitative support for tiered memory designs like MemGPT [9].
A three-tier system mapping to our findings would use: a hot tier
(r ~ 0.8-1.0) for high-saliency recent episodes; a warm tier (r ~ 0.4-
0.6) for medium-saliency episodes; and a cold tier (r ~ 0.1-0.2) for
archival episodes used primarily for broad retrieval matching.

Toward task-aware compression. Our saliency model uses a
simple combination of lexical overlap and recency. Richer models
that incorporate task structure—e.g., causal dependencies between
episodes, entity co-reference chains, or learned distortion predic-
tors trained on agent execution traces—could significantly improve
allocation quality. The rate-distortion framework naturally accom-
modates such extensions by replacing our proxy p; with a learned
distortion function.

Metric alignment. Our introduction of the saliency-weighted
retention metric addresses a conceptual gap in the original evalua-
tion: the adaptive controller optimizes a saliency-weighted objective
(Eq. 2), so evaluating it on an unweighted metric underestimates its
effectiveness. The saliency-weighted metric reveals a more favor-
able picture for adaptive allocation, extending its regime of advan-
tage to moderate budgets. Future work should explore additional
metrics such as query-conditioned fact recall (retention of only the
facts relevant to a specific downstream query) to further tighten
the alignment between optimization objective and evaluation.

5 CONCLUSION

We presented ITAMC, an information-theoretic framework for
adaptive memory compression in LLM-based agents. Through con-
trolled experiments on a variable-structure synthetic benchmark
with exact ground-truth fact retention, we established the following
findings.

First, all three compression operators—extractive, abstractive,
and latent—exhibit concave information retention proxy fron-
tiers, meaning moderate compression achieves substantial fact re-
tention while providing significant token savings. Budget-respecting
operator implementations ensure that reported compression ratios
reflect actual token usage.
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Second, optimal compression intensities are operator-dependent: [14]

knee-point analysis yields distinct optimal points for each operator
family, and a sensitivity analysis confirms these findings are robust
across hyperparameter choices.

Third, evaluating adaptive allocation with both global and saliency-

weighted retention metrics reveals that the saliency-weighted
metric—which aligns with the optimization objective—shows a
stronger and more sustained advantage for adaptive allocation. On
the global metric, adaptive allocation is most beneficial under ex-
treme budget constraints (<20% of raw memory), with uniform
compression preferred at moderate budgets.

Fourth, moderate compression does not degrade catastroph-
ically as the episode horizon grows from 10 to 100 episodes. A
sequential dependency analysis further shows that cross-episode
entity references are largely preserved at moderate compression
intensities.

Limitations. Our experiments use synthetic data with con-
trolled fact structure, which enables precise retention measurement
but does not capture the full complexity of real-world memory
content. The compression operators are simulation proxies; valida-
tion with actual LLM-based summarizers and embedding models
is needed. Our retention metric measures salient-fact preservation
rather than downstream task success—while these are correlated,
they are not identical. Extending ITAMC to dynamic online settings
where saliency shifts during execution, integrating with retrieval-
augmented generation systems, and validating on real agent bench-
marks (e.g., ALFWorld, WebShop) remain important directions for
future work.
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