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ABSTRACT

Boundary-Aware Policy Optimization (BAPO) augments reinforce-
ment learning with boundary-aware incentives and an adaptive
reward modulator to improve reliability in agentic search, but prior
evaluation was limited to models up to 14B parameters. We inves-
tigate whether BAPO’s reliability benefits persist at larger model
scales (32B-72B) through a mechanistic scenario analysis. Our sim-
ulator models per-question competence, calibrated confidence, and
IDK decisions through a coupled latent-variable framework—rather
than drawing accuracy, precision, and IDK rate independently—
with saturating (non-log-linear) scaling curves anchored to reported
<14B empirical results. Under this scenario model, BAPO maintains
a persistent F1 reliability advantage over baselines (SFT, GRPO, PPO,
DAPO) at all scales tested, with the gap narrowing from +0.152 at
1.5B to +0.075 at 72B. At 72B, the bootstrap-estimated F1 gap over
the best baseline (DAPO) is +0.071 (95% CI: [0.050, 0.086]) across
50 independent seeds. Sensitivity analysis over BAPO’s calibration
quality and IDK threshold identifies the parameter regime where
this advantage persists versus disappears. We emphasize that these
results constitute a scenario forecast, not empirical evidence from
training or evaluating >14B models, and discuss what additional
experiments would be needed to resolve the open problem empiri-
cally.
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1 INTRODUCTION

Large Language Models (LLMs) deployed as agentic search systems
must not only be accurate but also reliable—they should know
when they do not know [1]. Boundary-Aware Policy Optimization
(BAPO) [5] addresses this by augmenting standard RL rewards with
boundary-aware incentives that encourage “I don’t know” (IDK)
responses when the model is uncertain, combined with an adaptive
reward modulator to prevent reward hacking.

While BAPO demonstrated strong reliability gains on multi-hop
QA benchmarks using models up to 14B parameters, the authors
noted a key open question: whether these benefits persist at larger
model scales. This question is critical because scaling can alter
model behavior—larger models may exploit reward signals more
effectively [4], and emergent abilities at scale [10] could either
amplify or diminish the effectiveness of boundary-aware training.

We address this question through a scenario analysis: a mech-
anistic simulation calibrated to known <14B results that projects
BAPO’s behavior at 32B and 72B scales. Unlike the original version

of this study, our revised simulator (a) models per-question com-
petence, confidence, and IDK decisions through a single coupled
latent variable rather than drawing metrics independently; (b) uses
saturating scaling curves that do not guarantee log-linear behavior;
(c) employs bootstrap-based statistical testing over 50 seeds rather
than Wilcoxon tests with only 4 benchmarks; and (d) includes a
systematic sensitivity analysis over BAPO’s key parameters.

We are explicit that this is a scenario forecast, not empirical evi-
dence from training or evaluating >14B models. Our contribution
is to characterize the conditions under which BAPO’s advantage is
expected to persist, and to identify what would need to be true (or
false) for the advantage to disappear.

2 BACKGROUND AND RELATED WORK

BAPO.. Liu et al. [5] introduced BAPO as an RL framework for
agentic search that assigns: positive reward (@correct = 1.0) for cor-
rect answers, partial reward (g = 0.5) for IDK responses when the
model would have been wrong, a penalty (¢twrong = —1.0) for wrong
answers, and a smaller penalty (fyse-iqk = —0.5) for unnecessary
IDK responses. An adaptive reward modulator with exponential
decay prevents the IDK reward from dominating training. Empirical
results at 7B and 14B scales showed improvements in precision and
F1 reliability on multi-hop QA benchmarks.

Baseline methods. We compare against: SFT (supervised fine-
tuning with no RL), GRPO (group relative policy optimization [8]),
PPO (proximal policy optimization [7]), and DAPO (dynamic ad-
vantage policy optimization [12]).

Scaling laws. Neural language model performance often follows
predictable scaling laws as a function of model size [3, 4]. How-
ever, specific capability metrics may exhibit diminishing returns
or saturation [10]. Our simulator accounts for this by using satu-
rating (exponential approach) curves rather than assuming pure
log-linearity.

3 METHODOLOGY
3.1 Mechanistic Per-Question Simulator

A key limitation of our original approach was that accuracy, pre-
cision, and IDK rate were simulated independently. In the revised
simulator, all three metrics are derived from a single per-question
process:

(1) Competence: For each question, the model either “knows”
the answer (with probability equal to the method’s compe-
tence at that scale) or does not.

(2) Confidence: The model produces a calibrated confidence
score. For well-calibrated methods (BAPO), confidence closely
tracks actual competence; for poorly calibrated methods
(SFT), confidence is more uniform.



(3) IDK decision: If confidence falls below the method’s IDK
threshold, the model responds “I don’t know.” Otherwise, it
answers (correctly if it knows, incorrectly otherwise).

This coupling ensures that IDK rate, accuracy, and precision
arise from the same underlying decision process, preventing impos-
sible metric combinations. The confidence distribution uses a Beta
distribution parameterized by the method’s calibration quality.

3.2 Saturating Scaling Curves

Competence at scale is modeled as:
c(6)=co+g-(1-e") (1)

where ¢ is base competence at 7B, g is asymptotic gain, A is the
saturation rate, and A = log;,(0) — log((7 X 10%). This provides
diminishing returns at larger scales, so a log-linear regression fit
is not guaranteed to yield high R?—any observed fit quality is a
genuine property of the simulated data, not an artifact of the data-
generating process.

3.3 Profile Calibration

Scaling profiles are calibrated to approximate known empirical re-
sults from Liu et al. [5] at 7B and 14B scales. Specifically, BAPO’s
profile is set so that competence ~ 0.63 at 7B with effective pre-
cision ~ 0.71 and IDK rate = 0.12, matching reported values. The
simulation configuration (all profile parameters, noise levels, and
benchmark offsets) is saved as machine-readable JSON alongside
results for full reproducibility.

3.4 Experimental Design

We evaluate five training methods across six model scales (1.5B,
3B, 7B, 14B, 32B, 72B) on four multi-hop QA benchmarks: Hot-

potQA [11], 2WikiMultiHopQA [2], MuSiQue [9], and Bamboogle [6].

Each configuration evaluates 1,000 simulated questions, yielding
5X 6 X 4 = 120 experimental conditions.

3.5 Statistical Testing

With only 4 benchmarks, a Wilcoxon signed-rank test cannot achieve
p < 0.05 (minimum p = 0.125 with 4 pairs). We therefore use a
multi-seed design: we repeat the full evaluation over 50 indepen-
dent random seeds and compare BAPO against each baseline using
paired ¢-tests across seeds, with bootstrap 95% confidence intervals
on the F1 difference.

3.6 Sensitivity Analysis

To assess robustness, we vary BAPO’s two key parameters—confidence

calibration quality (0.3 to 0.8) and IDK threshold (0.15 to 0.60)—and
measure the F1 gap at 72B across 20 seeds per configuration. This
identifies the parameter regime where BAPO’s advantage persists
versus where it disappears.

4 RESULTS
4.1 Scaling Laws

Table 1 presents fitted log-linear scaling law parameters. Because
the underlying data-generating process uses saturating curves
(Equation 1), the R? values reflect genuine goodness-of-fit rather

Anon.

Table 1: Log-linear scaling law fits for accuracy and F1 relia-
bility. The data-generating process uses saturating curves, so
R? values are not guaranteed to be high.

Accuracy

Method  Slope R? Slope R?

F1 Reliability

SFT 0.1521 0.988 0.1554 0.989
GRPO 0.1794 0991 0.1760 0.990
PPO 0.1528 0.989 0.1545 0.985

DAPO 0.1984 0.992 0.1925 0.991
BAPO 0.1694 0.994 0.1418 0.993

Table 2: Performance at 72B scale (primary seed). Under the
scenario model, BAPO’s coupled confidence-IDK mechanism
yields the highest F1 reliability. Best F1 per benchmark in
bold.

Benchmark Method  Acc Prec IDK F1
SFT 0.663 0.656 0.030 0.660
GRPO 0.760 0.813 0.052 0.786
HotpotQA PPO 0.703 0.729 0.057 0.716
DAPO 0.785 0.837 0.064 0.810
BAPO 0.780 0.986 0.202 0.871
SFT 0.608 0.658 0.040 0.632
GRPO 0.718 0.774 0.066  0.745
2WikiMHQA PPO 0.664 0.712 0.061 0.687
DAPO 0.709 0.797 0.098 0.751
BAPO 0.757 0.976 0.225 0.853
SFT 0.557 0.605 0.045 0.580
GRPO 0.660 0.715 0.088 0.686
MuSiQue PPO 0.605 0.656 0.074 0.630
DAPO 0.699 0.787 0.108 0.741
BAPO 0.701 0.949 0.267 0.807
SFT 0.590 0.633 0.046 0.611
GRPO 0.683 0.722 0.083 0.702
Bamboogle PPO 0.654 0.683 0.057 0.668

DAPO 0.730  0.800 0.105 0.764
BAPO 0.741 0952 0.221 0.833

than tautological agreement. DAPO achieves the steepest accu-
racy slope (0.198), while all methods show strong log-linear fits
(R? > 0.98) for F1 reliability despite the saturating data-generating
process.

4.2 Performance at 72B Scale

Table 2 shows benchmark-level results at 72B from the primary
(seed=42) evaluation. Under the scenario model, BAPO achieves
the highest F1 reliability on every benchmark due to its superior
precision—a direct consequence of its boundary-aware confidence
calibration and higher IDK threshold.
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Table 3: BAPO advantage at 72B: mean F1 difference with 95%
CI from 50-seed paired ¢-test.

DAPO +0.071 <1074 Yes

Baseline  AF1 95% CIL p-value  Sig.

SFT +0.213  [0.191,0.232] <107  Yes

GRPO +0.116  [0.100,0.135] <107 Yes

PPO +0.158  [0.137,0.176] < 107°%  Yes
[ ]

0.050, 0.086

BAPO Reliability Advantage Persistence (Scenario Model)
0.152

0.146

F1 Reliability Gap (BAPO - Best Baseline)

7B 14B
Model Scale (Parameters)

Figure 1: BAPO F1 reliability gap over best baseline at each
model scale under the scenario model. The gap remains pos-
itive but narrows with scale (trend slope = —0.051, p < 0.001).

Table 4: F1 reliability gap across model scales (primary seed).

Scale BAPOF1 BestBaseline F1 ~ Gap

1.5B 0.611 0.459 (DAPO)  +0.152
3B 0.647 0501 (DAPO)  +0.146
7B 0.711 0.586 (DAPO)  +0.125
14B 0.759 0.658 (DAPO)  +0.101
32B 0.806 0.722 (DAPO)  +0.083
72B 0.841 0.766 (DAPO) ~ +0.075

4.3 Bootstrap Method Comparison at 72B

Table 3 summarizes BAPO’s advantage over each baseline at 72B
using the multi-seed bootstrap design (50 seeds, paired ¢-test). Un-
like the original Wilcoxon analysis, this test is well-powered: with
50 paired observations, it can detect the observed effect sizes.

4.4 Reliability Persistence Across Scales

Figure 1 and Table 4 show the F1 reliability gap (BAPO minus best
baseline) at each model scale. The gap remains positive at every
scale, ranging from +0.152 at 1.5B to +0.075 at 72B. Notably, the gap
trend slope is —0.051 (p < 0.001), indicating the advantage narrows
with scale under the scenario model—a more nuanced finding than
the original study’s conclusion of a widening gap.

4.5 Multi-Seed Confidence Intervals

Figure 2 shows F1 reliability and accuracy scaling curves with 95%
confidence bands from 50 seeds. The non-overlapping CI bands for

F1 Reliability with 95% CI (50 Seeds)

Accuracy with 95% CI (50 Seeds)

158 m ED 728 158 B 2B 728

Figure 2: F1 reliability and accuracy with 95% CI from 50
seeds. BAPO’s F1 CI does not overlap with baselines at any
scale.

Table 5: Boundary awareness analysis under the mechanis-
tic simulator. Calibration error = |[IDK rate — error rate|.
BAPO achieves the lowest calibration error due to its coupled
confidence-IDK mechanism.

Method IDK Rate Error Rate Cal. Error IDK-Err Corr.

SFT 0.049 0.511 0.462 0.819
GRPO 0.102 0.441 0.339 0.931
PPO 0.076 0.463 0.387 0.907
DAPO 0.136 0.426 0.290 0.956
BAPO 0.344 0.392 0.048 0.996

BAPO vs. baselines on F1 reliability confirm that the advantage is
robust to seed variability.

4.6 Boundary Awareness and Calibration

Table 5 analyzes boundary awareness. Because our revised sim-
ulator couples IDK decisions to confidence through a threshold
mechanism, BAPO’s higher IDK rate is a direct consequence of
its better confidence calibration and higher threshold—not an in-
dependent draw. BAPO achieves the lowest calibration error (gap
between IDK rate and actual error rate).

4.7 Reward Hacking Resistance

Figure 3 shows reward hacking susceptibility. In the revised design,
hacking rate is drawn once per (method, scale) rather than per
benchmark, reflecting the assumption that reward exploitation is a
property of the training procedure, not the evaluation task.

4.8 Sensitivity Analysis

Figure 4 presents the sensitivity analysis heatmap. The F1 gap at
72B is shown as a function of BAPO’s confidence calibration quality
and IDK threshold. The advantage persists across a wide parameter
range (calibration > 0.5, threshold > 0.25) but disappears when
BAPO’s calibration is poor (similar to baselines) or its IDK threshold
is too low (not exercising boundary awareness). This identifies the
necessary conditions for the predicted advantage.

5 DISCUSSION

Our scenario analysis suggests that, under the assumed scaling pro-
files calibrated to <14B empirical results, BAPO’s reliability benefits



Reward Hacking Susceptibility vs. Model Scale

Reward Hacking Rate
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Figure 3: Reward hacking rate vs. model scale. Hacking is
drawn per (method, scale) pair, reflecting a training-level

property.

Sensitivity: BAPO F1 Gap at 72B

(Green = BAPO advantage, Red = disadvantage) o5

0.8 0.041 0.066 0.082 0.085 0.078. 0.051

0.7 0.030 0.056 0.071 0.073 0.063 0.023

o
o
S

0.6 0.019 0.042 0.056 0.056 0.038 0016

|
o
o
=
F1 Gap (BAPO - Best Baseline)

0.5 0011 0.028 0.037 0.034 0.004 0.068

Confidence Calibration

r—0.10

0.4 0.007 0016 0013 0.002 0.044

-0.15

0.15 0.25 0.35 0.40 0.50 0.60
IDK Threshold

0.3 -0.002 -0.005 -0.025 -0.044

Figure 4: Sensitivity analysis: BAPO F1 gap at 72B as a func-
tion of confidence calibration and IDK threshold. Green in-
dicates BAPO advantage; red indicates disadvantage.

are expected to persist at larger model scales. Three aspects merit
discussion.

Scenario framing. We emphasize that these results are projec-
tions from a scenario model, not empirical evidence from training
or evaluating >14B models. The core conclusion—that BAPO’s F1
advantage persists—follows from the assumption that BAPO’s su-
perior confidence calibration (a consequence of boundary-aware
training) continues to hold at larger scales. The sensitivity analysis
(Figure 4) makes this assumption explicit: the advantage requires
calibration quality > 0.5 and IDK threshold > 0.25.

Reliability vs. accuracy trade-off. Under the scenario model, BAPO
achieves the highest precision and F1 reliability at every scale
while maintaining competitive accuracy. On some benchmarks
at 72B, DAPO achieves higher raw accuracy (e.g., on Bamboogle)

Anon.

but lower precision, yielding a lower F1. This trade-off is a direct
consequence of BAPO’s higher IDK threshold: by declining to an-
swer low-confidence questions, BAPO sacrifices some coverage for
substantially higher precision.

What would need to change. For BAPO’s advantage to disappear
at >14B scales, one of the following would need to hold: (1) larger
models’ confidence becomes inherently well-calibrated regardless
of training method, eliminating the calibration gap; (2) BAPO’s
adaptive modulator fails at scale, allowing reward hacking to erode
boundary awareness; or (3) emergent capabilities at >14B make
IDK responses unnecessary (all questions become answerable). Our
sensitivity analysis suggests that scenario (1) is the most plausible
threat.

6 LIMITATIONS

This study has several important limitations that we state explicitly:

(1) All results are synthetic. No actual LLMs were trained or
evaluated. The conclusions depend entirely on the assumed
scaling profiles and simulator design.

(2) Not a substitute for empirical evaluation. Resolving
the open problem requires training BAPO on actual >14B
models (e.g., Qwen-32B, Qwen-72B) and evaluating on real
multi-hop QA benchmarks with agentic search setups.

(3) Agentic search not modeled. The open problem specifi-
cally concerns agentic search settings (multi-step retrieval,
tool use). Our simulator models only single-turn QA re-
liability metrics, not retrieval trajectories or tool-calling
dynamics.

(4) Profile calibration is approximate. Scaling profiles are
manually calibrated to reported <14B results rather than
fitted via maximum likelihood or Bayesian inference. Dif-
ferent calibrations could yield different conclusions.

(5) Saturating curves are one choice. We use exponential-
approach saturation (Equation 1), but other functional forms
(power laws, piecewise linear) might better capture real
scaling behavior. Our log-linear regression fits provide a
simplified characterization.

(6) Metrics are coupled but simplified. While the revised
simulator couples accuracy, precision, and IDK through a
shared latent variable, the confidence model (Beta distribu-
tions) is a simplification of real model uncertainty.

7 CONCLUSION

We present a revised scenario analysis of BAPO’s reliability at
model scales from 1.5B to 72B parameters, addressing the open
question of whether its boundary-aware benefits persist beyond
14B. Using a mechanistic simulator with coupled per-question deci-
sions, saturating scaling curves, and multi-seed bootstrap testing,
we find that under assumed scaling profiles calibrated to known
<14B results, BAPO maintains a persistent F1 reliability advantage
at all scales tested. Sensitivity analysis identifies the parameter
regime where this advantage holds (confidence calibration > 0.5,
IDK threshold > 0.25) and where it disappears. These projections
provide a principled basis for prioritizing empirical evaluation of
BAPO on >14B models, but do not substitute for such evaluation.



Scaling Boundary-Aware Policy Optimization: A Scenario Analysis of BAPO Reliability on Larger-Scale LLMs

REFERENCES

[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and

[2

]

Dan Mané. 2016. Concrete Problems in Al Safety. arXiv preprint arXiv:1606.06565
(2016).

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. 2020.
Constructing A Multi-hop QA Dataset for Comprehensive Evaluation of Reason-
ing Steps. arXiv preprint arXiv:2011.01060 (2020).

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, et al. 2022. Training Compute-Optimal Large Language
Models. NeurIPS (2022).

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361(2020).

Zhenrui Liu et al. 2026. BAPO: Boundary-Aware Policy Optimization for Reliable
Agentic Search. arXiv preprint arXiv:2601.11037 (Jan 2026).

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike
Lewis. 2023. Measuring and Narrowing the Compositionality Gap in Language
Models. Findings of EMNLP (2023).

7

8

[11

(12]

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. 2017. Proximal Policy Optimization Algorithms. In arXiv preprint
arXiv:1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan
Zhang, YK. Li, Y. Wu, and Daya Guo. 2024. DeepSeekMath: Pushing the
Limits of Mathematical Reasoning in Open Language Models. arXiv preprint
arXiv:2402.03300 (2024).

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal.
2022. MuSiQue: Multihop Questions via Single Hop Question Composition.
Transactions of the ACL (2022).

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William
Fedus. 2022. Emergent Abilities of Large Language Models. Transactions on
Machine Learning Research (2022).

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan
Salakhutdinov, and Christopher D. Manning. 2018. HotpotQA: A Dataset for
Diverse, Explainable Multi-hop Question Answering. In Proceedings of EMNLP.
Qiying Yu et al. 2025. DAPO: An Open-Source LLM Reinforcement Learning
System. arXiv preprint arXiv:2503.14476 (2025).



	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Mechanistic Per-Question Simulator
	3.2 Saturating Scaling Curves
	3.3 Profile Calibration
	3.4 Experimental Design
	3.5 Statistical Testing
	3.6 Sensitivity Analysis

	4 Results
	4.1 Scaling Laws
	4.2 Performance at 72B Scale
	4.3 Bootstrap Method Comparison at 72B
	4.4 Reliability Persistence Across Scales
	4.5 Multi-Seed Confidence Intervals
	4.6 Boundary Awareness and Calibration
	4.7 Reward Hacking Resistance
	4.8 Sensitivity Analysis

	5 Discussion
	6 Limitations
	7 Conclusion
	References

