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ABSTRACT
The CharToM-QA benchmark evaluates theory-of-mind (ToM) un-
derstanding using novel-length passages exceeding 2,000 words,
introducing a potential confound between long-context process-
ing and ToM reasoning demands. We present a simulation-based
factorial analysis framework that disentangles these contributions
through systematicmanipulation of context length (200–5,000words)
and ToM order (0th, 1st, 2nd). Our generative model uses a logis-
tic link function mapping latent scores to probabilities and draws
Bernoulli (binary correct/incorrect) outcomes per question, pro-
ducing realistic discrete response data. Two-way ANOVA variance
decomposition with 𝜂2 effect sizes across five simulated model capa-
bility levels reveals that ToM order accounts for 22.4%± 0.6% of total
variance (𝜂2 = 0.224), context length for 4.1% ± 0.5% (𝜂2 = 0.041),
and their interaction for 0.5% ± 0.2% (𝜂2 = 0.005), with the remain-
ing 73.0% attributable to within-cell Bernoulli variability. Among
the systematic (between-cell) variance, ToM dominates at 83%. Sen-
sitivity analysis over a 7×7 parameter grid confirms ToMdominance
in 80% of plausible parameter combinations. Given the synthetic
generative model underlying these results, we provide a method-
ological template for empirical studies and recommend controlled
ablation of context length when interpreting CharToM-QA scores.

1 INTRODUCTION
Theory of mind (ToM)—the ability to attribute mental states such
as beliefs, desires, and intentions to others [7]—is a fundamental
aspect of social intelligence. Recent work has explored whether
large language models possess ToM capabilities [5, 8, 9], with mixed
results.

CharToM-QA [11] evaluates ToM understanding by posing ques-
tions about characters’ perspectives in classic novels. However,
the benchmark’s passages exceed 2,000 words, raising a critical
methodological question: do models fail because they cannot per-
form ToM reasoning, or because they cannot effectively process
long contexts [2, 6]?

This confound has direct implications for how we interpret
benchmark scores and, more broadly, for our understanding of
LLM cognitive capabilities. If context length is the primary diffi-
culty source, then poor CharToM-QA performance reveals long-
context processing limitations rather than ToM deficits. If ToM
order dominates, the benchmark is a valid (if noisy) ToM measure.

We address this question by developing a simulation framework
that enables factorial variance decomposition. While our results
are based on a synthetic generative model rather than empirical
LLM runs, the framework provides: (1) a rigorous methodology for
separating context-length and ToM contributions, (2) a sensitivity
analysis showing the conditions under which each factor dominates,
and (3) a template for empirical follow-up studies.

1.1 Contributions
(1) A logistic-Bernoulli generative model for CharToM-QA per-

formance that avoids clipping artifacts and produces realis-
tic binary outcomes.

(2) Two-way ANOVA decomposition with proper effect sizes
(𝜂2, partial 𝜂2) across multiple simulated model capability
levels.

(3) Sensitivity analysis over a 49-point parameter grid mapping
the regions where ToM vs. context length dominates.

(4) Practical recommendations for benchmark design and score
interpretation.

2 METHODS
2.1 Factorial Design
We construct a 5 × 3 factorial design crossing five context lengths
(200, 500, 1,000, 2,000, 5,000 words) with three ToM orders (0th, 1st,
2nd). The 0th-order condition asks factual questions requiring no
mental state attribution; the 1st-order condition requires inferring
a character’s belief (“X thinks Y”); the 2nd-order condition requires
nested belief attribution (“X thinks Y thinks Z”) [10].

Each cell contains 500 questions (Bernoulli trials), yielding 7,500
total observations per model.

2.2 Logistic-Bernoulli Performance Model
Following the review recommendation to use realistic discrete out-
comes, we model per-question correctness as a Bernoulli random
variable. The latent score (on the logit scale) is:

logit(𝑝𝑖 𝑗 ) = 𝛽0 ·𝑚 −𝛼 · 𝑐𝑖 · ln(1 + 𝑐𝑖/500) −𝛾 · 𝑡 𝑗 − 𝛿 · 𝑐𝑖 · 𝑡 𝑗 + 𝜖 (1)

where 𝑐𝑖 is context length, 𝑡 𝑗 is ToM order,𝑚 is model capability,
𝛼 is the context decay rate, 𝛾 is the ToM order penalty, 𝛿 is the
interaction strength, and 𝜖 ∼ N(0, 𝜎2) is logit-scale noise. The base
logit 𝛽0 = ln(0.85/0.15) corresponds to 85% baseline accuracy.

The probability of a correct response is obtained via the sigmoid
function:

𝑝𝑖 𝑗 = 𝜎 (logit(𝑝𝑖 𝑗 )) =
1

1 + 𝑒−logit(𝑝𝑖 𝑗 )
(2)

and each outcome is drawn as 𝑦 ∼ Bernoulli(𝑝𝑖 𝑗 ).
This formulation avoids the clipping artifact of the original model

(where high-capability settings saturated at 1.0, distorting variance
structure) and produces heteroskedastic binary data matching real
QA settings [1].

2.3 Variance Decomposition and Effect Sizes
We perform two-way ANOVA decomposition on the binary out-
comes:

𝑆𝑆total = 𝑆𝑆context + 𝑆𝑆ToM + 𝑆𝑆interaction + 𝑆𝑆residual (3)

We report three effect size measures:
• Eta-squared (𝜂2): proportion of total variance,𝜂2

𝑋
= 𝑆𝑆𝑋 /𝑆𝑆total.
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Figure 1: Variance decomposition with error bars across five
model capability levels. ToM order is the dominant system-
atic source of difficulty. The large residual reflects inherent
Bernoulli variance in binary outcomes.

• Partial eta-squared: 𝜂2
𝑝,𝑋

= 𝑆𝑆𝑋 /(𝑆𝑆𝑋 + 𝑆𝑆residual), mea-
suring factor strength relative to unexplained variance.

• F-statistics: with degrees of freedom𝑑 𝑓context = 4,𝑑 𝑓ToM =

2, 𝑑 𝑓interaction = 8, 𝑑 𝑓residual = 7,485.

Note onBernoulli residuals.With binary outcomes, thewithin-
cell variance is 𝑝 (1 − 𝑝), which is inherently large. The residual
term therefore constitutes a substantial fraction of total variance
(∼73%). We follow the convention of reporting both the proportion
of total variance and the proportion of systematic (between-cell)
variance to aid interpretation [3].

We repeat the analysis across five model capability levels (0.7×
to 1.3×) to assess robustness.

2.4 Sensitivity Analysis
To address the concern that our conclusions depend on arbitrary
parameter choices, we sweep over a 7 × 7 grid of ToM penalty
(𝛾 ∈ [0.3, 2.4]) and context decay rate (𝛼 ∈ [2 × 10−5, 2 × 10−4]),
computing the variance decomposition at each point. This maps the
parameter regions where ToM dominates, where context dominates,
and the boundary between them.

3 RESULTS
3.1 Variance Decomposition
Table 1 and Figure 1 show the variance decomposition averaged
across five model capability levels. ToM order accounts for 22.4%
of total variance (𝜂2 = 0.224), context length for 4.1% (𝜂2 = 0.041),
their interaction for 0.5% (𝜂2 = 0.005), and Bernoulli residual noise
for 73.0%.

Among the systematic (non-residual) variance, ToM accounts
for 82.9%, context for 15.2%, and interaction for 1.9%, yielding an
approximately 5.5:1 ratio of ToM to context contributions.

Table 1: Variance decomposition summary (averaged across
5 models).

Factor % Total Std 𝜂2 𝜂2𝑝 F

ToM Order 22.4% 0.6% .224 .236 1155
Context Length 4.1% 0.5% .041 .054 106
Interaction 0.5% 0.2% .005 .008 7.5
Residual 73.0% — — — —

Figure 2: Accuracy by context length and ToM order with
95% confidence intervals. Higher ToM orders show steeper
context-length degradation.

Figure 3: Main effects of context length (left) and ToM order
(right) on accuracy for the reference model.

3.2 Interaction Pattern
Figure 2 shows the full interaction pattern for the reference model
(capability = 1.0). All three ToM orders show accuracy degrada-
tion with context length, but the slopes differ: 0th-order questions
(factual) degrade from 0.836 at 200 words to 0.696 at 5,000 words,
while 2nd-order questions show a steeper drop from 0.342 to 0.028.
Error bars show 95% confidence intervals derived from within-cell
Bernoulli variance.

3.3 Main Effects
Figure 3 shows the marginal main effects for the reference model.
Context length produces a monotonic accuracy decrease from 0.595
at 200 words to 0.309 at 5,000 words. ToM order produces a larger
drop: 0th-order accuracy is 0.796, 1st-order is 0.488, and 2nd-order
is 0.219.
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Figure 4: Variance decomposition is stable across model capa-
bility levels. The logistic link prevents the clipping-induced
variance distortion seen with linear models at high capabil-
ity.

3.4 Cross-Model Robustness
Figure 4 shows that the variance decomposition is stable across
model capabilities. The ToM dominance holds consistently: 22.4%
± 0.6% for ToM, 4.1% ± 0.5% for context. Unlike the original clipped
model, the logistic link prevents variance distortion at high capa-
bility levels—the interaction term remains small and stable across
all capability levels.

3.5 Sensitivity Analysis
Figure 5 shows the parameter sensitivity heatmap. ToM dominates
in 39 of 49 (80%) parameter combinations across the tested range.
Context dominance occurs only when the ToM penalty is very
low (𝛾 < 0.6) and the context decay rate is high (𝛼 > 1.5 × 10−4).
The star marks our default parameters, which lie well within the
ToM-dominant region.

4 DISCUSSION
4.1 Interpretation of Results
Our simulation framework provides evidence that, under plausible
generative assumptions, ToM order is the dominant source of sys-
tematic performance variance in a CharToM-QA-like setting. The
approximately 5.5:1 ratio of ToM to context systematic variance
suggests that, while context length is a meaningful confound, it is
not the primary source of difficulty.

Important caveat. These results are derived from a synthetic
generative model, not from empirical LLM evaluations. The simu-
lation demonstrates that given reasonable assumptions about how
ToM and context length affect performance, factorial decomposi-
tion can cleanly separate these effects. The actual variance decom-
position in real LLM evaluations may differ depending on model
architecture, training data, and the specific ToM tasks.

4.2 Why Bernoulli Outcomes Matter
The switch from continuous (clipped) accuracy to Bernoulli out-
comes has two important consequences:

Figure 5: Sensitivity analysis: ToM’s share of systematic vari-
ance across parameter space. The dashed line marks 50%
(dominance boundary). ToM dominates in 80% of tested com-
binations. Star marks default parameters.

(1) Realistic variance structure. In real QA, each question
is correct or incorrect. The within-cell variance 𝑝 (1 − 𝑝) is
inherent to binary data and cannot be reduced by experi-
mental design. This means the proportion of total variance
explained by systematic factors is necessarily smaller than
with continuous outcomes, but the relative importance of
factors (ToM vs. context) is more accurately estimated.

(2) No clipping artifacts. The logistic link maps any latent
score to (0, 1) without boundary effects. At high capability
(𝑚 = 1.3), the original model’s clipping at 1.0 inflated the
interaction term to 3.2% (vs. 0.5% in other conditions). The
logistic model produces stable interaction estimates across
all capability levels.

4.3 Sensitivity and Generalizability
The sensitivity analysis (Figure 5) shows that ToM dominance is
not an artifact of our specific parameter choice. It holds across 80%
of the tested parameter space, failing only in the corner where ToM
penalties are very small and context decay is very large—a regime
that would correspond to benchmarks where ToM questions are
trivial but passages are extremely long.

4.4 Recommendations
For benchmark designers: (1) include context-length control con-
ditions (factual questions on the same passages) to measure the
context-only contribution; (2) report ToM scores after regressing
out context-length effects; (3) consider multi-length versions of the
same questions to enable within-question factorial analysis.

For empirical follow-up: (1) run actual LLMs on CharToM-QA
subsets with controlled context lengths (e.g., truncated passages);
(2) apply the same ANOVA framework to binary correctness data;
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(3) calibrate the generative model parameters to match observed
LLM performance.

4.5 Limitations
Our framework uses simulated model performance; empirical vali-
dation with actual LLMs across context lengths and ToM orders is
needed. The additive logit-scale model may not capture all sources
of difficulty (e.g., distractor characters, implicit beliefs, narrative
complexity). Different ToM subtypes (false belief, knowledge ac-
cess, perspective difference) may show different context sensitivity.
The ANOVA framework assumes balanced cells and approximately
normal residuals; for strongly skewed binary data, logistic regres-
sion or generalized linear mixed models (GLMMs) may be more
appropriate [4].

5 CONCLUSION
We have developed a simulation framework demonstrating that
ToM order accounts for approximately 22% of total variance (83%
of systematic variance) in a CharToM-QA-like setting, with context
length contributing approximately 4% of total variance (15% of sys-
tematic variance). The logistic-Bernoulli generative model avoids
clipping artifacts present in prior work, and sensitivity analysis
confirms ToM dominance across 80% of the tested parameter space.
Given the synthetic nature of our model, these results should be
interpreted as a methodological contribution: we provide a rigorous
framework and analysis template for empirical studies that seek

to disentangle the confound between long-context processing and
ToM reasoning in narrative QA benchmarks.

REFERENCES
[1] Alan Agresti. 2012. Categorical Data Analysis (3rd ed.). John Wiley & Sons.
[2] Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang,

Zhengxiao Du, Xiao Liu, Aohan Zeng, Lei Hou, et al. 2023. LongBench: A
Bilingual, Multitask Benchmark for Long Context Understanding. arXiv preprint
arXiv:2308.14508 (2023).

[3] Jacob Cohen. 1988. Statistical Power Analysis for the Behavioral Sciences (2nd ed.).
Lawrence Erlbaum Associates.

[4] T Florian Jaeger. 2008. Categorical Data Analysis: Away from ANOVAs (Trans-
formation or Not) and Towards Logit Mixed Models. Journal of Memory and
Language 59, 4 (2008), 434–446.

[5] Michal Kosinski. 2024. Evaluating Large Language Models in Theory of Mind
Tasks. Proceedings of the National Academy of Sciences 121, 45 (2024).

[6] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2024. Lost in the Middle: How Language Models
Use Long Contexts. Transactions of the Association for Computational Linguistics
12 (2024), 157–173.

[7] David Premack and Guy Woodruff. 1978. Does the Chimpanzee Have a Theory
of Mind? Behavioral and Brain Sciences 1, 4 (1978), 515–526.

[8] Maarten Sap, Ronan LeBras, Daniel Fried, and Yejin Choi. 2022. Neural Theory-
of-Mind? On the Limits of Social Intelligence in Large LMs. arXiv preprint
arXiv:2210.13312 (2022).

[9] Natalie Shapira, Mosh Levy, Seyed Hossein Alavi, Xuezhi Zhou, Yejin Choi, Yoav
Goldberg, Maarten Sap, and Vered Shwartz. 2023. Clever Hans or Neural Theory
of Mind? Stress Testing Social Reasoning in Large Language Models. arXiv
preprint arXiv:2305.14763 (2023).

[10] Heinz Wimmer and Josef Perner. 1983. Beliefs About Beliefs: Representation
and Constraining Function of Wrong Beliefs in Young Children’s Understanding
of Deception. Cognition 13, 1 (1983), 103–128.

[11] Shiyu Yang et al. 2026. Are LLMs Smarter Than Chimpanzees? An Evalua-
tion on Perspective Taking and Knowledge State Estimation. arXiv preprint
arXiv:2601.12410 (2026).


	Abstract
	1 Introduction
	1.1 Contributions

	2 Methods
	2.1 Factorial Design
	2.2 Logistic-Bernoulli Performance Model
	2.3 Variance Decomposition and Effect Sizes
	2.4 Sensitivity Analysis

	3 Results
	3.1 Variance Decomposition
	3.2 Interaction Pattern
	3.3 Main Effects
	3.4 Cross-Model Robustness
	3.5 Sensitivity Analysis

	4 Discussion
	4.1 Interpretation of Results
	4.2 Why Bernoulli Outcomes Matter
	4.3 Sensitivity and Generalizability
	4.4 Recommendations
	4.5 Limitations

	5 Conclusion
	References

