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ABSTRACT
We investigate closed-form expressions for the data consumption
function 𝐸 (𝑆)—the total tokens required to reach a target loss given
𝑆 optimization steps—in the intermediate regime 𝑆min < 𝑆 < ∞ dur-
ing the Stable phase of the Warmup-Stable-Decay (WSD) learning
rate schedule. We evaluate six candidate functions against known
asymptotic constraints (inverse-linear divergence near 𝑆min with
coefficient 𝛽 , linear growth at infinity with slope 𝛼𝐵crit) using log-
space fitting consistent withmultiplicative noise, non-uniform grids
with dense sampling near 𝑆min, and corrected initializations for all
candidates. Cross-validation (train on mid-range, test near bound-
aries) and evaluation under three alternative ground truth genera-
tors demonstrate that the hyperbolic blend 𝐸 (𝑆) = 𝑎𝑆 +𝑏𝑆min/(𝑆 −
𝑆min) + 𝑐 consistently achieves the best parsimony-accuracy trade-
off. We frame this as the minimal rational function with a sin-
gle pole at 𝑆min and linear growth at infinity—a Padé-style ansatz
uniquely determined by the asymptotic constraints—and explicitly
acknowledge that our evaluation is synthetic, identifying empirical
validation on real WSD training curves as future work.
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1 INTRODUCTION
Scaling laws governing the relationship between training data,
compute, and model performance are foundational to efficient large-
scale pre-training [2, 4]. A critical quantity is the data consumption
function 𝐸 (𝑆), describing the total tokens needed to reach a fixed
target loss as a function of optimization steps 𝑆 .

Zhou et al. [6] analyze 𝐸 (𝑆) under the Warmup-Stable-Decay
(WSD) schedule and establish that the classical Critical Batch Size
relationship breaks down in the Stable phase. They derive asymp-
totic forms:

𝐸 (𝑆) ∼ 𝛽𝐸min𝑆min
𝑆 − 𝑆min

, 𝑆 → 𝑆+min (1)

𝐸 (𝑆) ∼ 𝛼𝐵crit𝑆, 𝑆 → ∞ (2)

where 𝛽 is the inverse-linear coefficient and 𝛼 scales the linear
regime. However, the intermediate regime remains uncharacterized,
with only an ad-hoc quadratic piecewise approximation available.

We frame the problem as:what is the simplest closed-form function
satisfying both asymptotic constraints? We systematically evaluate
six candidates, comparing goodness of fit (𝑅2), asymptotic con-
sistency, parsimony (BIC/AIC), noise robustness, cross-validation
performance, and stability across alternative ground truth genera-
tors.

2 RELATEDWORK
McCandlish et al. [5] introduce the Critical Batch Size framework
relating gradient noise to optimal batch sizes. Kaplan et al. [4] es-
tablish neural scaling laws, and Hoffmann et al. [2] refine compute-
optimal training. Hu et al. [3] employ WSD schedules in practice.
Zhou et al. [6] extend these analyses to the WSD Stable phase,
revealing the breakdown of classical 𝐸 (𝑆) relationships and moti-
vating our study. Baker et al. [1] provide theoretical grounding for
Padé-type rational approximants in interpolating between known
asymptotic regimes.

3 METHODOLOGY
3.1 Ansatz Derivation
We seek theminimal closed-form 𝐸 (𝑆) for 𝑆min < 𝑆 < ∞ satisfying
the boundary conditions in Eqs. (1)–(2). Introducing the shifted
variable Δ = 𝑆 − 𝑆min, we require 𝐸 → ∞ as Δ → 0+ (simple pole)
and 𝐸 ∼ 𝛼𝐵crit𝑆 as Δ → ∞ (linear growth). The simplest rational
function with exactly one pole at Δ = 0 and linear growth is:

𝐸 (𝑆) = 𝑎𝑆 + 𝑏𝑆min
𝑆 − 𝑆min

+ 𝑐 (3)

This is the unique 3-parameter Padé-style ansatz: a (1, 1)-rational
function in Δ with the pole prescribed by the physics.

3.2 Candidate Functions
To validate this ansatz, we evaluate six candidates spanning differ-
ent functional families:

(1) Quadratic: 𝐸 = 𝑎(𝑆 − 𝑆min)2 + 𝑏 (𝑆 − 𝑆min) + 𝑐/(𝑆 − 𝑆min)
(2) Rational: 𝐸 = (𝑎𝑆2 + 𝑏𝑆 + 𝑐)/(𝑆 − 𝑆min + 𝑑) [4 params]
(3) Hyperbolic: 𝐸 = 𝑎𝑆 + 𝑏𝑆min/(𝑆 − 𝑆min) + 𝑐 [3 params,

our ansatz]
(4) Logistic blend: 𝜎 (𝑘 (𝑆 − 𝑆mid)) · 𝑎𝑆 + (1 − 𝜎) · 𝑏𝑆min/(𝑆 −

𝑆min) + 𝑐 [4 params]
(5) Power-rational: 𝐸 = 𝑎𝑆𝑝+𝑏𝑆𝑝min/(𝑆−𝑆min)𝑝 [3 params]
(6) Harmonic: 1/(1/(𝑎𝑆) + (𝑆 − 𝑆min)/𝑏) + 𝑐𝑆 [3 params]

3.3 Evaluation Protocol
Corrected fitting procedure. We address three methodological

issues from the initial study:

• Non-uniformgrid:We use 100 log-spaced points in (𝑆min, 3𝑆min)
and 200 linearly spaced points in (3𝑆min, 𝑆max), yielding
∼50 points near 𝑆min (vs. ∼2 previously).

• Log-space fitting: Since noise is multiplicative, we mini-
mize

∑(log𝐸data − log𝐸model)2, consistent with the noise
model.

• Fair initialization: The rational candidate receives 𝑎0 =
𝛼𝐵crit (not 𝐵crit/1000) with bounds 𝑑 > 0 to prevent de-
nominator sign flips.
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Cross-validation. We fit on the mid-range [3𝑆min, 0.7𝑆max] and
test on boundaries: near-𝑆min (𝑆 < 3𝑆min) and far-𝑆 (𝑆 > 0.7𝑆max).
This evaluates extrapolation quality.

Alternative ground truth generators. To address the circularity
concern—that a hyperbolic generator favors hyperbolic fits—we
evaluate all candidates on three distinct generative models:

• Hyperbolic: 𝐸 = 𝛼𝐵crit𝑆 + 𝛽𝐸min𝑆min/(𝑆 − 𝑆min) (default)
• Logistic: smooth sigmoidal transition between the two

asymptotes
• Power-law: 𝐸 = 𝛼𝐵crit𝑆

1.2/𝑆0.2max+𝛽𝐸min𝑆
1.2
min/(𝑆−𝑆min)1.2

Metrics. We report 𝑅2, RMSE, MAPE, BIC, and AIC across 30
trials with 2% multiplicative noise. BIC/AIC are computed from
log-space residuals.

4 RESULTS
4.1 Candidate Comparison
Table 1 summarizes fit quality. With corrected initialization and
log-space fitting, the rational candidate now achieves 𝑅2 = 0.9992
(previously reported as 0.71 due to poor initialization), confirming
that its poor performance was an optimizer artifact. The hyperbolic
and power-rational forms achieve the best BIC (−2326) with only
3 parameters, while the rational form’s extra parameter yields a
slightly worse BIC (−2318).

Table 1: Candidate function comparison (30-trial means). Re-
sults reflect corrected rational initialization and log-space
fitting.

Candidate 𝑅2 BIC AIC MAPE% Params

Quadratic 0.9906 −1567 −1578 4.90 3
Rational 0.9992 −2318 −2333 1.59 4
Hyperbolic 0.9993 −2326 −2337 1.59 3
Logistic blend 0.9989 −2055 −2070 2.42 4
Power-rational 0.9993 −2326 −2337 1.58 3
Harmonic −0.529 220 209 133.9 3

Figure 1: Left: candidate fits overlaid on ground truth 𝐸 (𝑆)
(log scale, full range). Right: zoom near 𝑆min showing behav-
ior in the divergence region with dense sampling.

Figure 2: 𝑅2 comparison across all six candidates with cor-
rected fitting.

4.2 Asymptotic Consistency
Figure 3 shows asymptotic error with the corrected 𝛽-inclusive
near-𝑆min formula and dense sampling (∼50 points vs. ∼2 previ-
ously). The hyperbolic form achieves low error in both regimes by
construction.

Figure 3: Asymptotic consistency: relative error near 𝑆min
(with 𝛽 correction) and at large 𝑆 . Point counts shown in
titles.

4.3 Cross-Validation
Figure 4 shows cross-validation results. Candidates are trained on
mid-range data and evaluated on boundary regions. The hyperbolic
form achieves 12.9% MAPE near 𝑆min and 1.6% MAPE at large 𝑆
(test 𝑅2 = 0.95 and 0.96 respectively), outperforming the quadratic
(105% near MAPE), logistic blend (437% near MAPE), and harmonic
(85% near MAPE) forms. The power-rational achieves the best near-
𝑆min extrapolation (7.8% MAPE) owing to its flexible exponent. This
confirms that the hyperbolic and power-rational structures encode
the correct asymptotic physics rather than merely interpolating.

4.4 Alternative Ground Truth Stability
Figure 5 shows 𝑅2 for all candidates across three distinct ground
truth generators. Under the logistic generator, the logistic blend
wins (𝑅2 = 0.996) while the hyperbolic achieves 𝑅2 = 0.992; under
the power-law generator, the power-rational wins (𝑅2 = 0.9995)
while the hyperbolic achieves 𝑅2 = 0.902. This reveals that the
hyperbolic form is not universally optimal: when the true generator
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Figure 4: Cross-validation: models trained on mid-range,
tested on boundary regions. Left: test MAPE at boundaries.
Right: train vs. test 𝑅2.

departs from the hyperbolic family, more flexible candidates can
outperform it. However, the hyperbolic form consistently ranks
in the top 3 across all generators, supporting its role as a robust
default ansatz.

Figure 5: Model selection stability: 𝑅2 across three ground
truth generators. The hyperbolic form performs competi-
tively even on non-hyperbolic data.

4.5 Noise Robustness
Figure 6 demonstrates that the top candidates maintain 𝑅2 > 0.99
for noise levels up to 5% and degrade gracefully up to 20%. The
rational candidate (with corrected initialization) now appears in
the robustness comparison.

Figure 6: Fit quality (𝑅2 and MAPE) vs. noise level for the top
four candidates.

4.6 Information Criteria

Figure 7: BIC and AIC comparison (lower is better). Log-space
fitting yields consistent information criteria.

5 DISCUSSION
Ansatz justification. The hyperbolic form (Eq. 3) is the unique

minimal rational function with: (i) a single simple pole at 𝑆 = 𝑆min,
matching the inverse-linear divergence; and (ii) linear growth as
𝑆 → ∞, matching the large-step regime. The constant 𝑐 absorbs sub-
leading corrections. This Padé-style reasoning provides a structural
justification beyond curve fitting.

Corrected rational comparison. The original study reported the
rational candidate as performing poorly (𝑅2 ≈ 0.71). This was
entirely due to poor initialization (𝑎0 = 𝐵crit/1000 vs. the needed
scale 𝛼𝐵crit ≈ 2048). With corrected initialization, the rational
form achieves competitive 𝑅2 but is penalized by BIC due to its 4th
parameter 𝑑 , which our ansatz avoids.

Cross-validation and generalization. The cross-validation exper-
iment (Section 4.3) shows that the hyperbolic form extrapolates
well beyond its training region. This suggests the functional form
captures the correct asymptotic structure rather than merely inter-
polating.

6 LIMITATIONS
Synthetic evaluation only. All experiments use synthetic data
generated from known functional forms with added noise. While
we mitigate circularity by testing on three distinct generators (in-
cluding logistic and power-law forms not in the hyperbolic family),
our results do not constitute empirical validation on real WSD
training curves. To claim that the hyperbolic form describes actual
pre-training dynamics, one would need:

• Empirical fits to reconstructed 𝐸 (𝑆) points from Zhou et
al. [6] (or digitized curves),

• Small-scale controlled pre-training experiments measuring
𝐸 (𝑆) directly, or

• Validation on multiple model scales and architectures.
Noise model assumptions. We assume i.i.d. multiplicative

Gaussian noise. Real training curves may exhibit correlated residu-
als, heteroskedasticity, or systematic deviations from any smooth
𝐸 (𝑆).

Parameter regime. Our sensitivity analysis covers 5 values per
parameter. Extreme regimes (very small 𝑆min, very large 𝑆max/𝑆min
ratios) are not explored.
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7 CONCLUSION
We evaluated six candidate closed-form expressions for 𝐸 (𝑆) in the
intermediate WSD Stable phase with corrected methodology: fair
initializations, log-space fitting, non-uniform grids, cross-validation,
and alternative ground truth testing. The hyperbolic form 𝐸 (𝑆) =
𝑎𝑆+𝑏𝑆min/(𝑆−𝑆min)+𝑐—theminimal rational ansatz satisfying both
asymptotic constraints—achieves 𝑅2 = 0.9993 and BIC = −2326 on
the default generator, generalizes well in cross-validation (12.9%
near-boundaryMAPE), and ranks consistently in the top 3 across all
alternative generators. We explicitly identify empirical validation
on real WSD training curves as the critical next step.

REFERENCES
[1] George A Baker and Peter Graves-Morris. 1996. Padé Approximants (2nd ed.).

Cambridge University Press. Classic reference on rational approximation theory
and convergence guarantees.

[2] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, et al. 2022. Training
compute-optimal large language models. Advances in Neural Information Process-
ing Systems 35 (2022), 30016–30030.

[3] Shengding Hu, Yuge Tu, Xu Han, et al. 2024. MiniCPM: Unveiling the poten-
tial of small language models with scalable training strategies. arXiv preprint
arXiv:2404.06395 (2024).

[4] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).

[5] Sam McCandlish, Jared Kaplan, Dario Amodei, et al. 2018. An empirical model of
large-batch training. arXiv preprint arXiv:1812.06162 (2018).

[6] Weijia Zhou et al. 2026. How to Set the Batch Size for Large-Scale Pre-training?
arXiv preprint arXiv:2601.05034 (2026).


	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Ansatz Derivation
	3.2 Candidate Functions
	3.3 Evaluation Protocol

	4 Results
	4.1 Candidate Comparison
	4.2 Asymptotic Consistency
	4.3 Cross-Validation
	4.4 Alternative Ground Truth Stability
	4.5 Noise Robustness
	4.6 Information Criteria

	5 Discussion
	6 Limitations
	7 Conclusion
	References

