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ABSTRACT

We investigate closed-form expressions for the data consumption
function E(S)—the total tokens required to reach a target loss given
S optimization steps—in the intermediate regime Sp,jn < S < co dur-
ing the Stable phase of the Warmup-Stable-Decay (WSD) learning
rate schedule. We evaluate six candidate functions against known
asymptotic constraints (inverse-linear divergence near Sy, with
coefficient f, linear growth at infinity with slope aBit) using log-
space fitting consistent with multiplicative noise, non-uniform grids
with dense sampling near Sp,iy, and corrected initializations for all
candidates. Cross-validation (train on mid-range, test near bound-
aries) and evaluation under three alternative ground truth genera-
tors demonstrate that the hyperbolic blend E(S) = aS + bSpin/ (S —
Smin) + ¢ consistently achieves the best parsimony-accuracy trade-
off. We frame this as the minimal rational function with a sin-
gle pole at Sy, and linear growth at infinity—a Padé-style ansatz
uniquely determined by the asymptotic constraints—and explicitly
acknowledge that our evaluation is synthetic, identifying empirical
validation on real WSD training curves as future work.
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1 INTRODUCTION

Scaling laws governing the relationship between training data,
compute, and model performance are foundational to efficient large-
scale pre-training [2, 4]. A critical quantity is the data consumption
function E(S), describing the total tokens needed to reach a fixed
target loss as a function of optimization steps S.

Zhou et al. [6] analyze E(S) under the Warmup-Stable-Decay
(WSD) schedule and establish that the classical Critical Batch Size
relationship breaks down in the Stable phase. They derive asymp-
totic forms:
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where f is the inverse-linear coefficient and « scales the linear
regime. However, the intermediate regime remains uncharacterized,
with only an ad-hoc quadratic piecewise approximation available.

We frame the problem as: what is the simplest closed-form function
satisfying both asymptotic constraints? We systematically evaluate
six candidates, comparing goodness of fit (R?), asymptotic con-
sistency, parsimony (BIC/AIC), noise robustness, cross-validation
performance, and stability across alternative ground truth genera-
tors.

2 RELATED WORK

McCandlish et al. [5] introduce the Critical Batch Size framework
relating gradient noise to optimal batch sizes. Kaplan et al. [4] es-
tablish neural scaling laws, and Hoffmann et al. [2] refine compute-
optimal training. Hu et al. [3] employ WSD schedules in practice.
Zhou et al. [6] extend these analyses to the WSD Stable phase,
revealing the breakdown of classical E(S) relationships and moti-
vating our study. Baker et al. [1] provide theoretical grounding for
Padé-type rational approximants in interpolating between known
asymptotic regimes.

3 METHODOLOGY

3.1 Ansatz Derivation

We seek the minimal closed-form E(S) for Spin < S < oo satisfying
the boundary conditions in Egs. (1)-(2). Introducing the shifted
variable A = § — Sy, we require E — co as A — 07 (simple pole)
and E ~ aBitS as A — oo (linear growth). The simplest rational
function with exactly one pole at A = 0 and linear growth is:
bSmi
ES)=aS+ —= +¢ (3)
S = Smin

This is the unique 3-parameter Padé-style ansatz: a (1, 1)-rational
function in A with the pole prescribed by the physics.

3.2 Candidate Functions

To validate this ansatz, we evaluate six candidates spanning differ-
ent functional families:

(1) Quadratic: E = a(S — Smin)? + b(S = Smin) + ¢/ (S = Smin)

(2) Rational: E = (aS? + bS +¢)/(S — Spin +d)  [4 params)]

(3) Hyperbolic: E = aS + bSpin /(S — Smin) + ¢ [3 params,
our ansatz]

(4) Logistic blend: o(k(S — Spig)) - aS+ (1 — ) - bSmin/(S —

Smin) + ¢ [4 params]
(5) Power-rational: E = aS? +bS£1 i/ (S=Smin)?  [3 params]
(6) Harmonic: 1/(1/(aS) + (S — Smin)/b) + ¢S [3 params]

3.3 Evaluation Protocol

Corrected fitting procedure. We address three methodological
issues from the initial study:

e Non-uniform grid: We use 100 log-spaced points in (Smin, 3Smin)

and 200 linearly spaced points in (3Spin, Smax), yielding
~50 points near Sy (vs. ~2 previously).

e Log-space fitting: Since noise is multiplicative, we mini-
mize 3 (1og Egata — 10 Emmodel) %, consistent with the noise
model.

e Fair initialization: The rational candidate receives ag =
aBeyit (not Beyit/1000) with bounds d > 0 to prevent de-
nominator sign flips.



Cross-validation. We fit on the mid-range [3Spin, 0.7Smax] and
test on boundaries: near-Syyi, (S < 3Smin) and far-S (S > 0.7Smax).
This evaluates extrapolation quality.

Alternative ground truth generators. To address the circularity
concern—that a hyperbolic generator favors hyperbolic fits—we
evaluate all candidates on three distinct generative models:

e Hyperbolic: E = aBitS + fEminSmin/ (S — Smin) (default)

e Logistic: smooth sigmoidal transition between the two
asymptotes

e Power-law: E = aB.iS'%/S%2, + ﬂEminS;izn /(S —=Smin) 2

Metrics. We report R2, RMSE, MAPE, BIC, and AIC across 30

trials with 2% multiplicative noise. BIC/AIC are computed from
log-space residuals.

4 RESULTS

4.1 Candidate Comparison

Table 1 summarizes fit quality. With corrected initialization and
log-space fitting, the rational candidate now achieves R? = 0.9992
(previously reported as 0.71 due to poor initialization), confirming
that its poor performance was an optimizer artifact. The hyperbolic
and power-rational forms achieve the best BIC (—2326) with only
3 parameters, while the rational form’s extra parameter yields a
slightly worse BIC (—2318).

Table 1: Candidate function comparison (30-trial means). Re-
sults reflect corrected rational initialization and log-space
fitting.

Candidate R? BIC AIC MAPE% Params
Quadratic 0.9906 —1567 —1578 4.90 3
Rational 0.9992 -2318 —2333 1.59 4
Hyperbolic 0.9993 2326 —2337 1.59 3
Logistic blend 0.9989  —2055 —2070 2.42 4
Power-rational 0.9993 -2326 -2337 1.58 3
Harmonic —0.529 220 209 133.9 3
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Figure 1: Left: candidate fits overlaid on ground truth E(S)
(log scale, full range). Right: zoom near Sy,;;, showing behav-
ior in the divergence region with dense sampling.
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Figure 2: R* comparison across all six candidates with cor-
rected fitting.

4.2 Asymptotic Consistency

Figure 3 shows asymptotic error with the corrected S-inclusive
near-Spin formula and dense sampling (~50 points vs. ~2 previ-
ously). The hyperbolic form achieves low error in both regimes by
construction.
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Figure 3: Asymptotic consistency: relative error near Sy
(with f correction) and at large S. Point counts shown in
titles.

4.3 Cross-Validation

Figure 4 shows cross-validation results. Candidates are trained on
mid-range data and evaluated on boundary regions. The hyperbolic
form achieves 12.9% MAPE near Sp,in and 1.6% MAPE at large S
(test R? = 0.95 and 0.96 respectively), outperforming the quadratic
(105% near MAPE), logistic blend (437% near MAPE), and harmonic
(85% near MAPE) forms. The power-rational achieves the best near-
Smin extrapolation (7.8% MAPE) owing to its flexible exponent. This
confirms that the hyperbolic and power-rational structures encode
the correct asymptotic physics rather than merely interpolating.

4.4 Alternative Ground Truth Stability

Figure 5 shows R? for all candidates across three distinct ground
truth generators. Under the logistic generator, the logistic blend
wins (R? = 0.996) while the hyperbolic achieves R? = 0.992; under
the power-law generator, the power-rational wins (R? = 0.9995)
while the hyperbolic achieves R? = 0.902. This reveals that the
hyperbolic form is not universally optimal: when the true generator
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Figure 4: Cross-validation: models trained on mid-range,
tested on boundary regions. Left: test MAPE at boundaries.
Right: train vs. test R%.

departs from the hyperbolic family, more flexible candidates can
outperform it. However, the hyperbolic form consistently ranks
in the top 3 across all generators, supporting its role as a robust
default ansatz.
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Figure 5: Model selection stability: R? across three ground
truth generators. The hyperbolic form performs competi-
tively even on non-hyperbolic data.

4.5 Noise Robustness

Figure 6 demonstrates that the top candidates maintain R? > 0.99
for noise levels up to 5% and degrade gracefully up to 20%. The
rational candidate (with corrected initialization) now appears in
the robustness comparison.
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Figure 6: Fit quality (R?> and MAPE) vs. noise level for the top
four candidates.

4.6 Information Criteria
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Figure 7: BIC and AIC comparison (lower is better). Log-space
fitting yields consistent information criteria.

5 DISCUSSION

Ansatz justification. The hyperbolic form (Eq. 3) is the unique
minimal rational function with: (i) a single simple pole at S = Spin,
matching the inverse-linear divergence; and (ii) linear growth as
S — oo, matching the large-step regime. The constant ¢ absorbs sub-
leading corrections. This Padé-style reasoning provides a structural
justification beyond curve fitting.

Corrected rational comparison. The original study reported the
rational candidate as performing poorly (R? ~ 0.71). This was
entirely due to poor initialization (ap = Bcyit/1000 vs. the needed
scale aBgrit ~ 2048). With corrected initialization, the rational
form achieves competitive R? but is penalized by BIC due to its 4th
parameter d, which our ansatz avoids.

Cross-validation and generalization. The cross-validation exper-
iment (Section 4.3) shows that the hyperbolic form extrapolates
well beyond its training region. This suggests the functional form
captures the correct asymptotic structure rather than merely inter-
polating.

6 LIMITATIONS

Synthetic evaluation only. All experiments use synthetic data
generated from known functional forms with added noise. While
we mitigate circularity by testing on three distinct generators (in-
cluding logistic and power-law forms not in the hyperbolic family),
our results do not constitute empirical validation on real WSD
training curves. To claim that the hyperbolic form describes actual
pre-training dynamics, one would need:
e Empirical fits to reconstructed E(S) points from Zhou et
al. [6] (or digitized curves),
e Small-scale controlled pre-training experiments measuring
E(S) directly, or
e Validation on multiple model scales and architectures.
Noise model assumptions. We assume i.i.d. multiplicative
Gaussian noise. Real training curves may exhibit correlated residu-
als, heteroskedasticity, or systematic deviations from any smooth
E(S).
Parameter regime. Our sensitivity analysis covers 5 values per
parameter. Extreme regimes (very small Sy, very large Smax/Smin
ratios) are not explored.



7 CONCLUSION

We evaluated six candidate closed-form expressions for E(S) in the
intermediate WSD Stable phase with corrected methodology: fair
initializations, log-space fitting, non-uniform grids, cross-validation,
and alternative ground truth testing. The hyperbolic form E(S) =
aS+bSmin /(S—Smin)+c—the minimal rational ansatz satisfying both
asymptotic constraints—achieves R? = 0.9993 and BIC = —2326 on
the default generator, generalizes well in cross-validation (12.9%
near-boundary MAPE), and ranks consistently in the top 3 across all
alternative generators. We explicitly identify empirical validation
on real WSD training curves as the critical next step.

Anon.
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