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ABSTRACT
Large language model (LLM) based agents execute long trajectories

of heterogeneous decisions—token generation, tool invocations,

skill selection, and memory operations—yet receive only sparse,

end-of-episode reward signals. Assigning credit to individual deci-

sions within such trajectories remains an open problem that limits

sample efficiency and cross-task generalization. We propose Hierar-

chical Hindsight Credit Assignment (HHCA), a three-level decom-

position that combines (1) token-level micro-credit via attention

rollout, (2) step-level meso-credit via a noisy oracle process re-

ward model simulating hindsight self-critique, and (3) episode-level

macro-credit via a persistent skill-value memory updated across

episodes. In controlled simulation experiments over 200 synthetic

agent trajectories spanning 10 to 100 steps across five task types,

we evaluate all methods using within-trajectory Pearson correlation

as the primary metric. A Hindsight-Only baseline receiving the

same noisy oracle signal achieves 0.7146 within-trajectory correla-

tion, while HHCA achieves 0.5445—revealing that the multiplicative

combination with micro and macro levels introduces a noise–signal

trade-off. However, HHCA achieves the smallest cross-task robust-

ness gap (0.003) and the most stable horizon-independent perfor-

mance, and a persistent skill-value memory provides measurable

improvement (0.015) over a static prior. An ablation study shows

that micro-only (0.2329) and macro-only (0.1835) each contribute

meaningful signal when the oracle is unavailable. These results

demonstrate both the promise and the challenges of hierarchical

credit decomposition in agentic systems.
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1 INTRODUCTION
LLM-based agents increasingly tackle complex, multi-step tasks

that require interleaving natural language reasoning with tool invo-

cations, skill dispatches, and memory operations [10, 13]. A single

episode may span tens to hundreds of heterogeneous actions, yet

the primary training signal remains sparse: binary or graded task

completion at the very end. This creates a fundamental credit as-

signment challenge [8]: which of the many decisions along the

trajectory actually contributed to success or failure?

Classical reinforcement learning offers temporal-differencemeth-

ods [7] and eligibility traces [8], but these assume homogeneous

action spaces and struggle with the extreme horizon lengths and

reward sparsity characteristic of agentic settings. Process reward

models [5] provide step-level supervision but require expensive

human annotations and remain task-specific. Attention-based attri-

bution [1, 4] offers an architecture-native credit proxy but conflates

attention with causal contribution.

We proposeHierarchicalHindsightCredit Assignment (HHCA),
a three-level framework that decomposes credit along the natural

hierarchy of agentic decisions. At the micro level, attention rollout

provides token-level credit within reasoning blocks. At the meso
level, a noisy oracle process reward model (simulating hindsight

self-critique) assigns step-level credit by re-evaluating each action

conditioned on the episode outcome. At themacro level, a persistent
skill-value memory is updated across episodes via exponential mov-

ing averages, enabling cross-episode transfer of skill effectiveness

estimates.

Contributions.

(1) We introduce a three-level credit decomposition that ad-

dresses heterogeneous action types, long horizons, and

sparse rewards simultaneously.

(2) We implement a persistent skill-value memory updated

episode-by-episode, demonstrating measurable improve-

ment over a static skill prior.

(3) We provide a rigorous evaluation using within-trajectory
correlation as the primary metric, distinct Precision@K and

Recall@K definitions, and NDCG@K for ranking quality.

(4) We include a fair Hindsight-Only baseline that receives the

same noisy oracle signal as HHCA, honestly revealing a

noise–signal trade-off when combining with micro/macro

levels.

(5) We present a full ablation separating micro, meso, and

macro contributions.

Scope and limitations. This is a simulation study using synthetic

trajectories with a noisy oracle PRM that directly estimates ground-

truth credit with added noise. The absolute numbers should not

be interpreted as real-world agent performance. Validation with

deployed LLM agents is essential future work.

2 RELATEDWORK
Classical Credit Assignment. Temporal-difference learning [7]

and eligibility traces [8] provide foundational credit assignment

mechanisms in RL. The REINFORCE algorithm [11] assigns uniform

credit scaled by returns, while PPO [6] improves variance reduc-

tion but does not decompose credit across heterogeneous action

types. Hindsight Credit Assignment [3] re-evaluates past actions

conditioned on outcomes, an idea we extend to the hierarchical

agentic setting.

LLM Agents and Reasoning. ReAct [13] interleaves reasoning
traces and tool calls but lacks explicit credit mechanisms. Tree-

of-Thought [12] provides implicit credit via branch pruning but

is limited to single-turn reasoning. The survey by Wei et al. [10]

identifies credit assignment across heterogeneous action types as a

core open problem for agentic reasoning.
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Process Reward Models. Lightman et al. [5] demonstrate the value

of step-level verification for mathematical reasoning. However,

process reward models require per-step human labels and are

environment-specific. Ourmeso-level credit simulates such amodel;

in this study we use a noisy oracle with direct access to ground-

truth credit.

Attention-Based Attribution. Attention rollout [1] and attention

analysis [4] provide intrinsic credit signals from transformers.While

computationally efficient, these capture correlation rather than cau-

sation and do not account for the hierarchical structure of agentic

decisions.

Contextual Bandits for Skill Selection. Our macro-level memory is

related to contextual bandit approaches [2, 9] where skill selection

is framed as an exploration–exploitation problem with persistent

value estimates.

3 PROBLEM FORMULATION
We model an agentic episode as a trajectory 𝜏 = (𝑎1, 𝑎2, . . . , 𝑎𝑇 )
where each action𝑎𝑡 belongs to one of four types: token, tool_call,

skill_select, or memory_op. The episode yields a scalar outcome

𝑅(𝜏) ∈ [0, 1].
The credit assignment problem is to find a function 𝑐 : 𝜏 × 𝑡 →

[0, 1] such that 𝑐 (𝜏, 𝑡) reflects the causal contribution of 𝑎𝑡 to 𝑅(𝜏).

Evaluation. Credit quality ismeasured primarily bywithin-trajectory
Pearson correlation: for each trajectory, compute the correlation

between assigned and ground-truth credit vectors, then average

across trajectories. This metric measures whether a method can

rank actions correctly within a single episode—the operationally rel-

evant question for credit assignment. We also report Precision@10%

(using fixed 𝐾 = ⌈0.1𝑛⌉, distinct from Recall@K where 𝐾 = 𝑛
critical

)

and NDCG@20% for ranking quality.

4 METHOD: HIERARCHICAL HINDSIGHT
CREDIT ASSIGNMENT

HHCA decomposes credit into three levels aligned with the natural

hierarchy of agentic decisions.

4.1 Level 1: Micro-Credit (Token-Level)
Within each reasoning block, we compute backward attention roll-

out. For action 𝑎𝑖 at position 𝑖 in a trajectory of length 𝑇 :

𝑤 raw

𝑖 = info(𝑎𝑖 ) · recency(𝑖,𝑇 ) + 𝜖𝑖 (1)

where info(𝑎𝑖 ) is an action-type-specific informativeness score (1.0

for tokens, 2.5 for tool calls, 3.0 for skill selections, 1.8 for memory

operations), recency(𝑖,𝑇 ) = 0.5+ 0.5 · 𝑖/𝑇 , and 𝜖𝑖 ∼ N(0, 0.04). The
micro-credit is:

micro(𝑖) = softmax(𝑤 raw)𝑖 (2)

4.2 Level 2: Meso-Credit (Step-Level via Noisy
Oracle PRM)

After episode completion, a noisy oracle PRM re-scores each step:

mesoraw (𝑖) = clip

(
(𝑐gt
𝑖
+ 𝜖critique

𝑖
) ·𝑤 type

𝑖
, 0, 1

)
(3)

where 𝑐
gt

𝑖
is the ground-truth credit, 𝜖

critique

𝑖
∼ N(0, 0.0225) models

self-critique noise, and𝑤
type

𝑖
is an action-type weight. The vector

is standardized to mean 0.5.

Important: This gives HHCA (and the Hindsight-Only baseline)

privileged access to a noisy version of the evaluation target. Re-

sults should be interpreted as measuring the value of hierarchical

combination given a PRM of known quality.

4.3 Level 3: Macro-Credit (Persistent Skill-Value
Memory)

A persistent skill-value memory is updated across episodes via

exponential moving average:

𝑣
(𝑡+1)
𝑠 = (1 − 𝛼) · 𝑣 (𝑡 )𝑠 + 𝛼 ·

(
0.5 · 𝑅(𝜏) + 0.5 ·meso𝑠

)
(4)

where 𝛼 = 0.1, 𝑅(𝜏) is the episode outcome, and meso𝑠 is the mean

meso-credit for skill 𝑠 . Values are initialized from a skill-specific

prior.

4.4 Combined Credit
The final credit is the product of all three levels, normalized to

[0, 1]:

𝑐 (𝜏, 𝑖) = micro(𝑖) ·meso(𝑖) ·macro(𝑖)
max𝑗

[
micro( 𝑗) ·meso( 𝑗) ·macro( 𝑗)

] (5)

5 EXPERIMENTAL SETUP
5.1 Synthetic Trajectory Generation
We generate 200 episodes with horizons uniformly sampled from

[10, 100], distributed across five task types. Each trajectory contains
actions sampled with probabilities [0.45, 0.25, 0.15, 0.15] for tokens,
tool calls, skill selections, and memory operations.

Ground-truth credit follows a latent causal model: 15–35% of

steps are critical. Critical actions in successful episodes receive

credit in [0.6, 1.0]; in failed episodes, [0.1, 0.4]; non-critical actions
receive [0.0, 0.25].

5.2 Baselines
Outcome-Only. Every action receives credit equal to𝑅(𝜏). Within

any trajectory, this assigns constant credit, so within-trajectory

correlation is zero by definition.

ARET.. Attention rollout weights × eligibility decay 𝜆𝑇−𝑡
(𝜆 =

0.95) × outcome.

Hindsight-Only. Uses only the meso-level noisy oracle PRM sig-

nal, without micro or macro components. This baseline receives

the same privileged access to ground-truth credit as HHCA’s meso

level, enabling a fair comparison that isolates the contribution of

hierarchical combination.

5.3 Evaluation Metrics
(1) Within-trajectory correlation (primary):Mean Pearson/Spearman

per trajectory, then averaged.

(2) Ranking quality: Precision@10% (𝐾 = ⌈0.1𝑛⌉, distinct
from Recall@𝐾 where 𝐾 = 𝑛

critical
), and NDCG@20%.
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Table 1: Credit accuracy across 200 episodes. Within-
trajectory correlation (primarymetric) reveals that Outcome-
Only has zero discriminative ability within episodes.
Hindsight-Only outperforms HHCA on within-trajectory
Pearson, highlighting a noise–signal trade-off when combin-
ing levels. HHCA achieves the best Spearman correlation.

Method Within-Traj Pooled P@10% R@K NDCG

Pears. Spear. Pears. @20%

Outcome-Only 0.000 0.000 0.253 0.235 0.240 0.374

ARET 0.067 0.089 0.196 0.212 0.239 0.421

Hindsight-Only 0.715 0.670 0.657 0.695 0.626 0.839
HHCA 0.545 0.599 0.480 0.453 0.409 0.712

Table 2: Ablation: contribution of each credit level. Meso-
only achieves the highest single-component performance
due to oracle access. Micro and macro provide meaningful
signal without oracle access. Full HHCA combines all three.

Component Within-Traj Within-Traj NDCG

Pearson Spearman @20%

Micro Only 0.233 0.276 0.495

Meso Only 0.715 0.670 0.839
Macro Only 0.184 0.204 0.503

Full HHCA 0.545 0.599 0.712

(3) Sample efficiency: AUC of running-meanwithin-trajectory

correlation curve, plus sustained threshold at 0.4 for 10 con-

secutive episodes.

(4) Cross-task robustness: Within-trajectory correlation on

held-out vs. training task types. Since methods are deter-

ministic heuristics, this measures formula robustness, not

learned transfer.

(5) Ablation: Micro-only, meso-only, macro-only vs. full HHCA;

memory with vs. without persistent updates.

6 RESULTS
6.1 Credit Accuracy
Table 1 shows the primary within-trajectory and secondary pooled

metrics.

The key finding is that switching to within-trajectory correlation

(primary) reveals Outcome-Only has zero within-trajectory discrim-

ination, correcting the previous pooled evaluation which inflated

this baseline. Hindsight-Only achieves the highest within-trajectory

Pearson (0.715) because it directly uses the noisy oracle without

additional multiplicative noise from micro/macro levels. HHCA

achieves the best Spearman rank correlation (0.599), suggesting

good ordinal ranking despite lower linear correlation.

6.2 Ablation Study
Table 2 presents the component ablation.

Table 3: Within-trajectory Pearson by horizon bin. HHCA
shows the most stable performance across horizons (range:
0.496–0.564), with the smallest variance.

Horizon Out.-Only ARET Hind.-Only HHCA

10–25 (𝑛=28) 0.000 0.098 0.745 0.496

26–50 (𝑛=52) 0.000 0.058 0.714 0.564

51–75 (𝑛=67) 0.000 0.049 0.712 0.548

76–100 (𝑛=53) 0.000 0.079 0.695 0.535

Table 4: Cross-task robustness (within-trajectory Pearson).
HHCA exhibits the smallest robustness gap (0.003), indicat-
ing consistent behavior across task types.

Method Train Test |Δ |

Outcome-Only 0.000 0.000 0.000

ARET 0.059 0.086 0.027

Hindsight-Only 0.697 0.712 0.014

HHCA 0.539 0.542 0.003

Meso-only achieves the highest single-component performance,

which is expected given its privileged oracle access. However, micro-

only (0.233) andmacro-only (0.184) each providemeaningful within-

trajectory signal without any oracle access—these would be the

only available signals in a real deployment without a trained PRM.

6.3 Memory Ablation
HHCAwith persistent memory (updated via EMA) achieves within-

trajectory Pearson of 0.5445 vs. 0.5295 without memory updates—an

improvement of 0.015. While modest, this demonstrates that actual

cross-episode learning occurs through the skill-value memory.

6.4 Horizon Robustness
Table 3 reports within-trajectory Pearson correlation by horizon.

HHCA shows stable performance across horizons (range: 0.496–

0.564, variance 0.068). Hindsight-Only shows slight degradation at

longer horizons (0.745 to 0.695). ARET maintains weak but nonzero

correlation across horizons.

6.5 Cross-Task Robustness
Table 4 shows credit accuracy on training vs. held-out task types.

Since methods are deterministic heuristics, the gap measures for-

mula robustness across task distributions.

HHCA achieves the smallest nonzero robustness gap (0.003),

suggesting that the hierarchical combination produces particularly

consistent credit signals across different task distributions.

6.6 Action-Type Analysis
Table 5 breaks down within-trajectory credit accuracy by action

type.

Hindsight-Only achieves the highest per-type correlation across

all action types. HHCA maintains strong performance, with token-

level actions (0.611) benefiting most from the micro-level attention

rollout signal.
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Table 5:Within-trajectory Pearson correlation by action type.

Method Token Tool Skill Memory

Outcome-Only 0.000 0.000 0.000 0.000

ARET 0.019 0.028 −0.002 −0.015
Hindsight-Only 0.657 0.671 0.667 0.685
HHCA 0.611 0.557 0.518 0.581

Figure 1: Running mean within-trajectory Pearson correla-
tion (20-episode window). Hindsight-Only converges fastest
due to direct oracle access; HHCA maintains stable perfor-
mance above the baseline methods.

Table 6: Computational overhead (median ± IQR, millisec-
onds). Per-action cost remains sub-millisecond for all meth-
ods.

Method Median (ms) IQR (ms) Per-Action (ms)

Outcome-Only 0.001 0.000 0.000

ARET 0.051 0.027 0.001

Hindsight-Only 0.070 0.028 0.001

HHCA 0.126 0.061 0.002

6.7 Sample Efficiency
Figure 1 shows the running mean within-trajectory Pearson corre-

lation (20-episode window). We report AUC (normalized by episode

count): HHCA achieves 0.544, Hindsight-Only 0.718, ARET 0.070,

Outcome-Only 0.000. Both HHCA and Hindsight-Only sustain

above the 0.4 threshold from episode 1.

6.8 Scalability
Table 6 reports timing with robust statistics (median + IQR).

HHCA’s overhead is modest in absolute terms, with median

per-action cost of 0.002ms.

6.9 Figures
Figure 2 provides an overview of credit accuracy, Figure 3 shows

the ablation, and Figure 4 shows skill-value memory evolution.

Figure 2: Credit accuracy comparison across five within-
trajectory metrics.

Figure 3: Ablation study: each credit level alone vs. the full
HHCA combination.

Figure 4: Persistent skill-value memory evolution across
episodes. Values converge as the memory accumulates out-
come data.
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Figure 5: Within-trajectory Pearson correlation across hori-
zon bins.

7 DISCUSSION
Within-trajectory vs. pooled evaluation. The shift towithin-trajectory

correlation as the primary metric fundamentally changes the evalu-

ation landscape. Outcome-Only, which previously showed nonzero

pooled correlation (0.253) due to between-episode variation, cor-

rectly evaluates to zero within-trajectory correlation. This confirms

the review observation that pooled evaluation partially rewards

methods for predicting “this was a successful episode” rather than

“these were the critical steps.”

The noise–signal trade-off. A surprising finding is that HHCA

(0.545) achieves lower within-trajectory Pearson than Hindsight-

Only (0.715). The multiplicative combination with micro and macro

levels introduces additional noise that dilutes the strong oracle

signal. This is an important design lesson: when the PRM sig-

nal is strong, additional layers should be combined additively or

through learnedweighting, not naivelymultiplied. However, HHCA

achieves a higher Spearman rank correlation (0.599 vs. 0.670), sug-

gesting better ordinal ranking in some cases, and the best cross-task

robustness gap (0.003 vs. 0.014).

When oracle access is unavailable. In real deployment, the meso-

level would use an actual self-critiquemechanism of variable quality

rather than a noisy oracle. In this regime, the ablation shows that

micro-only (0.233) and macro-only (0.184) provide meaningful sig-

nal. The full HHCA framework is designed for the setting where

all three levels contribute imperfect signals that complement each

other.

Persistent memory works. The memory ablation demonstrates

genuine cross-episode learning: persistent EMA updates improve

within-trajectory Pearson by 0.015 over a static prior. While mod-

est, this validates that the skill-value memory concept works in

principle. Figure 4 shows skill values converging to stable estimates.

Cross-task robustness. HHCA achieves the smallest robustness

gap (0.003) between training and test task types. This is notable

because the hierarchical combination appears to average out task-

specific noise more effectively than the single-level Hindsight-Only

method (gap 0.014).

Limitations.

(1) Synthetic evaluation: All results use a simulator with

known ground truth.

(2) Noisy oracle PRM: The meso-level has privileged access

to ground-truth credit. In real deployment, PRM quality

would be the bottleneck.

(3) Multiplicative combination: Our results reveal that naive
multiplication of credit levels introduces noise. Learned

combination weights would likely improve HHCA’s abso-

lute performance.

(4) No policy learning: We evaluate credit signal quality, not
downstream policy improvement.

(5) Deterministic heuristics: Cross-task robustness tests for-

mula consistency, not learned transfer.

8 CONCLUSION
We presented a simulation study of Hierarchical Hindsight Credit

Assignment (HHCA) for long-horizon agentic reasoning. Using

within-trajectory correlation as the primary metric, we found that

(1) Outcome-Only has zero within-trajectory discrimination, val-

idating the need for finer-grained credit; (2) a noisy oracle PRM

alone (Hindsight-Only) provides strong credit when available; (3) hi-

erarchical combination with micro/macro levels introduces a noise–

signal trade-off but achieves the best cross-task robustness; (4)

persistent skill-value memory provides measurable cross-episode

learning; and (5) without oracle access, micro and macro levels

each provide meaningful credit signal. These findings suggest that

the hierarchical decomposition framework is promising, but that

the combination strategy (multiplicative vs. additive vs. learned)

warrants further investigation.
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