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ABSTRACT

Large language model (LLM) based agents execute long trajectories
of heterogeneous decisions—token generation, tool invocations,
skill selection, and memory operations—yet receive only sparse,
end-of-episode reward signals. Assigning credit to individual deci-
sions within such trajectories remains an open problem that limits
sample efficiency and cross-task generalization. We propose Hierar-
chical Hindsight Credit Assignment (HHCA), a three-level decom-
position that combines (1) token-level micro-credit via attention
rollout, (2) step-level meso-credit via a noisy oracle process re-
ward model simulating hindsight self-critique, and (3) episode-level
macro-credit via a persistent skill-value memory updated across
episodes. In controlled simulation experiments over 200 synthetic
agent trajectories spanning 10 to 100 steps across five task types,
we evaluate all methods using within-trajectory Pearson correlation
as the primary metric. A Hindsight-Only baseline receiving the
same noisy oracle signal achieves 0.7146 within-trajectory correla-
tion, while HHCA achieves 0.5445—revealing that the multiplicative
combination with micro and macro levels introduces a noise—signal
trade-off. However, HHCA achieves the smallest cross-task robust-
ness gap (0.003) and the most stable horizon-independent perfor-
mance, and a persistent skill-value memory provides measurable
improvement (0.015) over a static prior. An ablation study shows
that micro-only (0.2329) and macro-only (0.1835) each contribute
meaningful signal when the oracle is unavailable. These results
demonstrate both the promise and the challenges of hierarchical
credit decomposition in agentic systems.
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1 INTRODUCTION

LLM-based agents increasingly tackle complex, multi-step tasks
that require interleaving natural language reasoning with tool invo-
cations, skill dispatches, and memory operations [10, 13]. A single
episode may span tens to hundreds of heterogeneous actions, yet
the primary training signal remains sparse: binary or graded task
completion at the very end. This creates a fundamental credit as-
signment challenge [8]: which of the many decisions along the
trajectory actually contributed to success or failure?

Classical reinforcement learning offers temporal-difference meth-
ods [7] and eligibility traces [8], but these assume homogeneous
action spaces and struggle with the extreme horizon lengths and
reward sparsity characteristic of agentic settings. Process reward
models [5] provide step-level supervision but require expensive
human annotations and remain task-specific. Attention-based attri-
bution [1, 4] offers an architecture-native credit proxy but conflates
attention with causal contribution.

We propose Hierarchical Hindsight Credit Assignment (HHCA),

a three-level framework that decomposes credit along the natural
hierarchy of agentic decisions. At the micro level, attention rollout
provides token-level credit within reasoning blocks. At the meso
level, a noisy oracle process reward model (simulating hindsight
self-critique) assigns step-level credit by re-evaluating each action
conditioned on the episode outcome. At the macro level, a persistent
skill-value memory is updated across episodes via exponential mov-
ing averages, enabling cross-episode transfer of skill effectiveness
estimates.

Contributions.

(1) We introduce a three-level credit decomposition that ad-
dresses heterogeneous action types, long horizons, and
sparse rewards simultaneously.

(2) We implement a persistent skill-value memory updated
episode-by-episode, demonstrating measurable improve-
ment over a static skill prior.

(3) We provide a rigorous evaluation using within-trajectory
correlation as the primary metric, distinct Precision@K and
Recall@K definitions, and NDCG@K for ranking quality.

(4) We include a fair Hindsight-Only baseline that receives the
same noisy oracle signal as HHCA, honestly revealing a
noise—signal trade-off when combining with micro/macro
levels.

(5) We present a full ablation separating micro, meso, and
macro contributions.

Scope and limitations. This is a simulation study using synthetic
trajectories with a noisy oracle PRM that directly estimates ground-
truth credit with added noise. The absolute numbers should not
be interpreted as real-world agent performance. Validation with
deployed LLM agents is essential future work.

2 RELATED WORK

Classical Credit Assignment. Temporal-difference learning [7]
and eligibility traces [8] provide foundational credit assignment
mechanisms in RL. The REINFORCE algorithm [11] assigns uniform
credit scaled by returns, while PPO [6] improves variance reduc-
tion but does not decompose credit across heterogeneous action
types. Hindsight Credit Assignment [3] re-evaluates past actions
conditioned on outcomes, an idea we extend to the hierarchical
agentic setting.

LLM Agents and Reasoning. ReAct [13] interleaves reasoning
traces and tool calls but lacks explicit credit mechanisms. Tree-
of-Thought [12] provides implicit credit via branch pruning but
is limited to single-turn reasoning. The survey by Wei et al. [10]
identifies credit assignment across heterogeneous action types as a
core open problem for agentic reasoning.



Process Reward Models. Lightman et al. [5] demonstrate the value
of step-level verification for mathematical reasoning. However,
process reward models require per-step human labels and are
environment-specific. Our meso-level credit simulates such a model;
in this study we use a noisy oracle with direct access to ground-
truth credit.

Attention-Based Attribution. Attention rollout [1] and attention
analysis [4] provide intrinsic credit signals from transformers. While
computationally efficient, these capture correlation rather than cau-
sation and do not account for the hierarchical structure of agentic
decisions.

Contextual Bandits for Skill Selection. Our macro-level memory is
related to contextual bandit approaches [2, 9] where skill selection
is framed as an exploration-exploitation problem with persistent
value estimates.

3 PROBLEM FORMULATION

We model an agentic episode as a trajectory 7 = (aj, as,...,ar)
where each action a; belongs to one of four types: TOKEN, TOOL_CALL,
SKILL_SELECT, or MEMORY_OP. The episode yields a scalar outcome
R(7) € [0,1].

The credit assignment problem is to find a functionc: 7 Xt —
[0, 1] such that ¢(z, t) reflects the causal contribution of a; to R(7).

Evaluation. Credit quality is measured primarily by within-trajectory

Pearson correlation: for each trajectory, compute the correlation
between assigned and ground-truth credit vectors, then average
across trajectories. This metric measures whether a method can
rank actions correctly within a single episode—the operationally rel-
evant question for credit assignment. We also report Precision@10%
(using fixed K = [0.1n], distinct from Recall@K where K = ncyitical)
and NDCG@20% for ranking quality.

4 METHOD: HIERARCHICAL HINDSIGHT
CREDIT ASSIGNMENT

HHCA decomposes credit into three levels aligned with the natural
hierarchy of agentic decisions.

4.1 Level 1: Micro-Credit (Token-Level)

Within each reasoning block, we compute backward attention roll-
out. For action a; at position i in a trajectory of length T

wi™ = info(a;) - recency (i, T) + ¢ 1)

where info(a;) is an action-type-specific informativeness score (1.0
for tokens, 2.5 for tool calls, 3.0 for skill selections, 1.8 for memory
operations), recency(i,T) = 0.5+0.5-i/T, and €; ~ N(0,0.04). The
micro-credit is:

micro(i) = softmax(w™®"); (2)

4.2 Level 2: Meso-Credit (Step-Level via Noisy
Oracle PRM)

After episode completion, a noisy oracle PRM re-scores each step:

mesoraw (i) = clip((cgt + el.critique) . w:ype, 0, 1) 3)

i

Anon.

critique
i

~ N(0,0.0225) models

¢ is an action-type weight. The vector

where c:.gt is the ground-truth credit, e

. . t
self-critique noise, and Wiyp

is standardized to mean 0.5.

Important: This gives HHCA (and the Hindsight-Only baseline)
privileged access to a noisy version of the evaluation target. Re-
sults should be interpreted as measuring the value of hierarchical
combination given a PRM of known quality.

4.3 Level 3: Macro-Credit (Persistent Skill-Value
Memory)

A persistent skill-value memory is updated across episodes via
exponential moving average:

vs(tﬂ) =(1-a)- vit) +a- (0.5 R(r) + 0.5 - mesos) (4)

where a = 0.1, R(7) is the episode outcome, and meso; is the mean
meso-credit for skill s. Values are initialized from a skill-specific
prior.

4.4 Combined Credit

The final credit is the product of all three levels, normalized to
[0,1]:

micro(i) - meso(i) - macro(i)

®)

c(r,i) =
max; [micro(j) - meso(j) - macro(j)]

5 EXPERIMENTAL SETUP
5.1 Synthetic Trajectory Generation

We generate 200 episodes with horizons uniformly sampled from
[10,100], distributed across five task types. Each trajectory contains
actions sampled with probabilities [0.45,0.25,0.15, 0.15] for tokens,
tool calls, skill selections, and memory operations.

Ground-truth credit follows a latent causal model: 15-35% of
steps are critical. Critical actions in successful episodes receive
credit in [0.6, 1.0]; in failed episodes, [0.1, 0.4]; non-critical actions
receive [0.0,0.25].

5.2 Baselines

Outcome-Only. Every action receives credit equal to R(7). Within
any trajectory, this assigns constant credit, so within-trajectory
correlation is zero by definition.

ARET. Attention rollout weights x eligibility decay A7 ~* (A =
0.95) X outcome.

Hindsight-Only. Uses only the meso-level noisy oracle PRM sig-
nal, without micro or macro components. This baseline receives
the same privileged access to ground-truth credit as HHCA’s meso
level, enabling a fair comparison that isolates the contribution of
hierarchical combination.

5.3 Evaluation Metrics

(1) Within-trajectory correlation (primary): Mean Pearson/Spearman

per trajectory, then averaged.
(2) Ranking quality: Precision@10% (K = [0.1n], distinct
from Recall@K where K = ngyitical), and NDCG@20%.
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Table 1: Credit accuracy across 200 episodes. Within-
trajectory correlation (primary metric) reveals that Outcome-
Only has zero discriminative ability within episodes.
Hindsight-Only outperforms HHCA on within-trajectory
Pearson, highlighting a noise-signal trade-off when combin-
ing levels. HHCA achieves the best Spearman correlation.

NDCG
@20%

Method Within-Traj Pooled P@10% R@K

Pears. Spear.  Pears.

Outcome-Only 0.000 0.000 0.253 0.235 0.240 0.374

ARET 0.067  0.089 0.196 0.212 0.239 0.421
Hindsight-Only 0.715 0.670  0.657 0.695 0.626 0.839
HHCA 0.545  0.599 0.480 0.453 0.409 0.712

Table 2: Ablation: contribution of each credit level. Meso-
only achieves the highest single-component performance
due to oracle access. Micro and macro provide meaningful
signal without oracle access. Full HHCA combines all three.

Component  Within-Traj Within-Traj NDCG
Pearson Spearman @20%
Micro Only 0.233 0.276 0.495
Meso Only 0.715 0.670 0.839
Macro Only 0.184 0.204 0.503
Full HHCA 0.545 0.599 0.712

(3) Sample efficiency: AUC of running-mean within-trajectory
correlation curve, plus sustained threshold at 0.4 for 10 con-
secutive episodes.

(4) Cross-task robustness: Within-trajectory correlation on
held-out vs. training task types. Since methods are deter-
ministic heuristics, this measures formula robustness, not
learned transfer.

(5) Ablation: Micro-only, meso-only, macro-only vs. ful HHCA;
memory with vs. without persistent updates.

6 RESULTS
6.1 Credit Accuracy

Table 1 shows the primary within-trajectory and secondary pooled
metrics.

The key finding is that switching to within-trajectory correlation
(primary) reveals Outcome-Only has zero within-trajectory discrim-
ination, correcting the previous pooled evaluation which inflated
this baseline. Hindsight-Only achieves the highest within-trajectory
Pearson (0.715) because it directly uses the noisy oracle without
additional multiplicative noise from micro/macro levels. HHCA
achieves the best Spearman rank correlation (0.599), suggesting
good ordinal ranking despite lower linear correlation.

6.2 Ablation Study

Table 2 presents the component ablation.

Table 3: Within-trajectory Pearson by horizon bin. HHCA
shows the most stable performance across horizons (range:
0.496-0.564), with the smallest variance.

Horizon Out.-Only ARET Hind.-Only HHCA
10-25 (n=28) 0.000 0.098 0.745 0.496
26-50 (n=52) 0.000 0.058 0.714 0.564
51-75 (n=67) 0.000 0.049 0.712 0.548
76-100 (n=53) 0.000 0.079 0.695 0.535

Table 4: Cross-task robustness (within-trajectory Pearson).
HHCA exhibits the smallest robustness gap (0.003), indicat-
ing consistent behavior across task types.

Method Train  Test |A|

Outcome-Only ~ 0.000 0.000  0.000
ARET 0.059 0.086  0.027
Hindsight-Only  0.697 0.712  0.014
HHCA 0.539 0.542 0.003

Meso-only achieves the highest single-component performance,
which is expected given its privileged oracle access. However, micro-
only (0.233) and macro-only (0.184) each provide meaningful within-
trajectory signal without any oracle access—these would be the
only available signals in a real deployment without a trained PRM.

6.3 Memory Ablation

HHCA with persistent memory (updated via EMA) achieves within-
trajectory Pearson of 0.5445 vs. 0.5295 without memory updates—an
improvement of 0.015. While modest, this demonstrates that actual
cross-episode learning occurs through the skill-value memory.

6.4 Horizon Robustness

Table 3 reports within-trajectory Pearson correlation by horizon.

HHCA shows stable performance across horizons (range: 0.496—-
0.564, variance 0.068). Hindsight-Only shows slight degradation at
longer horizons (0.745 to 0.695). ARET maintains weak but nonzero
correlation across horizons.

6.5 Cross-Task Robustness

Table 4 shows credit accuracy on training vs. held-out task types.
Since methods are deterministic heuristics, the gap measures for-
mula robustness across task distributions.

HHCA achieves the smallest nonzero robustness gap (0.003),
suggesting that the hierarchical combination produces particularly
consistent credit signals across different task distributions.

6.6 Action-Type Analysis

Table 5 breaks down within-trajectory credit accuracy by action
type.

Hindsight-Only achieves the highest per-type correlation across
all action types. HHCA maintains strong performance, with token-
level actions (0.611) benefiting most from the micro-level attention
rollout signal.



Table 5: Within-trajectory Pearson correlation by action type.

Method Token  Tool Skill ~ Memory
Outcome-Only 0.000  0.000 0.000 0.000
ARET 0.019  0.028 —0.002 -0.015
Hindsight-Only ~ 0.657 0.671  0.667 0.685
HHCA 0.611 0.557 0.518 0.581

Sample Efficiency: Running Mean Within-Trajectory Correlation
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Figure 1: Running mean within-trajectory Pearson correla-
tion (20-episode window). Hindsight-Only converges fastest
due to direct oracle access; HHCA maintains stable perfor-
mance above the baseline methods.

Table 6: Computational overhead (median + IQR, millisec-
onds). Per-action cost remains sub-millisecond for all meth-
ods.

Method Median (ms) IQR (ms) Per-Action (ms)
Outcome-Only 0.001 0.000 0.000
ARET 0.051 0.027 0.001
Hindsight-Only 0.070 0.028 0.001
HHCA 0.126 0.061 0.002

6.7 Sample Efficiency

Figure 1 shows the running mean within-trajectory Pearson corre-
lation (20-episode window). We report AUC (normalized by episode
count): HHCA achieves 0.544, Hindsight-Only 0.718, ARET 0.070,
Outcome-Only 0.000. Both HHCA and Hindsight-Only sustain
above the 0.4 threshold from episode 1.

6.8 Scalability

Table 6 reports timing with robust statistics (median + IQR).
HHCA'’s overhead is modest in absolute terms, with median
per-action cost of 0.002ms.

6.9 Figures

Figure 2 provides an overview of credit accuracy, Figure 3 shows
the ablation, and Figure 4 shows skill-value memory evolution.

Anon.
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Figure 2: Credit accuracy comparison across five within-
trajectory metrics.

Ablation: Individual vs. Combined Credit Levels
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Figure 3: Ablation study: each credit level alone vs. the full
HHCA combination.

Skill-Value Memory Evolution Across Episodes

—o— debug
o= summarize

—o— plan
—o— verify

0.8

o
NN}
L

Skill Value Estimate
o =}
w o

0.4 -

T T T T T T
0 25 50 75 100 125 150 175 200
Episodes Processed

Figure 4: Persistent skill-value memory evolution across
episodes. Values converge as the memory accumulates out-
come data.
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Figure 5: Within-trajectory Pearson correlation across hori-
zon bins.

7 DISCUSSION

Within-trajectory vs. pooled evaluation. The shift to within-trajectory

correlation as the primary metric fundamentally changes the evalu-
ation landscape. Outcome-Only, which previously showed nonzero
pooled correlation (0.253) due to between-episode variation, cor-
rectly evaluates to zero within-trajectory correlation. This confirms
the review observation that pooled evaluation partially rewards
methods for predicting “this was a successful episode” rather than
“these were the critical steps.”

The noise—signal trade-off. A surprising finding is that HHCA
(0.545) achieves lower within-trajectory Pearson than Hindsight-
Only (0.715). The multiplicative combination with micro and macro
levels introduces additional noise that dilutes the strong oracle
signal. This is an important design lesson: when the PRM sig-
nal is strong, additional layers should be combined additively or
through learned weighting, not naively multiplied. However, HHCA
achieves a higher Spearman rank correlation (0.599 vs. 0.670), sug-
gesting better ordinal ranking in some cases, and the best cross-task
robustness gap (0.003 vs. 0.014).

When oracle access is unavailable. In real deployment, the meso-
level would use an actual self-critique mechanism of variable quality
rather than a noisy oracle. In this regime, the ablation shows that
micro-only (0.233) and macro-only (0.184) provide meaningful sig-
nal. The full HHCA framework is designed for the setting where
all three levels contribute imperfect signals that complement each
other.

Persistent memory works. The memory ablation demonstrates
genuine cross-episode learning: persistent EMA updates improve
within-trajectory Pearson by 0.015 over a static prior. While mod-
est, this validates that the skill-value memory concept works in
principle. Figure 4 shows skill values converging to stable estimates.

Cross-task robustness. HHCA achieves the smallest robustness
gap (0.003) between training and test task types. This is notable
because the hierarchical combination appears to average out task-
specific noise more effectively than the single-level Hindsight-Only
method (gap 0.014).

Limitations.

(1) Synthetic evaluation: All results use a simulator with
known ground truth.

(2) Noisy oracle PRM: The meso-level has privileged access
to ground-truth credit. In real deployment, PRM quality
would be the bottleneck.

(3) Multiplicative combination: Our results reveal that naive
multiplication of credit levels introduces noise. Learned
combination weights would likely improve HHCA'’s abso-
lute performance.

(4) No policy learning: We evaluate credit signal quality, not
downstream policy improvement.

(5) Deterministic heuristics: Cross-task robustness tests for-
mula consistency, not learned transfer.

8 CONCLUSION

We presented a simulation study of Hierarchical Hindsight Credit
Assignment (HHCA) for long-horizon agentic reasoning. Using
within-trajectory correlation as the primary metric, we found that
(1) Outcome-Only has zero within-trajectory discrimination, val-
idating the need for finer-grained credit; (2) a noisy oracle PRM
alone (Hindsight-Only) provides strong credit when available; (3) hi-
erarchical combination with micro/macro levels introduces a noise—
signal trade-off but achieves the best cross-task robustness; (4)
persistent skill-value memory provides measurable cross-episode
learning; and (5) without oracle access, micro and macro levels
each provide meaningful credit signal. These findings suggest that
the hierarchical decomposition framework is promising, but that
the combination strategy (multiplicative vs. additive vs. learned)
warrants further investigation.

REFERENCES

[1] Samira Abnar and Willem Zuidema. 2020. Quantifying Attention Flow in Trans-
formers. In Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics. 4190-4197.

[2] Peter Auer, Nicold Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. 2002. The
Nonstochastic Multiarmed Bandit Problem. SIAM J. Comput. 32, 1, 48-77.

[3] Anna Harutyunyan, Will Dabney, Thomas Mesnard, Mohammad Ghesh-

laghi Azar, Bilal Piot, Nicolas Heess, Hado P. van Hasselt, Gregory Wayne,

Satinder Singh, Doina Precup, and Rémi Munos. 2019. Hindsight Credit Assign-

ment. In Advances in Neural Information Processing Systems, Vol. 32.

Sarthak Jain and Byron C. Wallace. 2019. Attention is not Explanation. In

Proceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics. 3543-3556.

[5] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri Edwards, Bowen Baker,
Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. 2023. Let’s
Verify Step by Step. arXiv preprint arXiv:2305.20050 (2023).

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347
(2017).

[7] Richard S. Sutton. 1988. Learning to Predict by the Methods of Temporal Differ-
ences. Machine Learning 3, 1 (1988), 9-44.

[8] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction (2nd ed.). MIT Press.

[9] William R. Thompson. 1933. On the Likelihood that One Unknown Probability
Exceeds Another in View of the Evidence of Two Samples. Biometrika 25, 3/4
(1933), 285-294.

[10] Jason Wei et al. 2026. Agentic Reasoning for Large Language Models. arXiv

preprint arXiv:2601.12538 (2026).
[11] Ronald J. Williams. 1992. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Machine Learning 8, 3-4 (1992), 229-256.
[12] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao,
and Karthik Narasimhan. 2024. Tree of Thoughts: Deliberate Problem Solving
with Large Language Models. Advances in Neural Information Processing Systems
36 (2024).

—_
=t



Anon.

[13] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, Models. In International Conference on Learning Representations.
and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language



	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Method: Hierarchical Hindsight Credit Assignment
	4.1 Level 1: Micro-Credit (Token-Level)
	4.2 Level 2: Meso-Credit (Step-Level via Noisy Oracle PRM)
	4.3 Level 3: Macro-Credit (Persistent Skill-Value Memory)
	4.4 Combined Credit

	5 Experimental Setup
	5.1 Synthetic Trajectory Generation
	5.2 Baselines
	5.3 Evaluation Metrics

	6 Results
	6.1 Credit Accuracy
	6.2 Ablation Study
	6.3 Memory Ablation
	6.4 Horizon Robustness
	6.5 Cross-Task Robustness
	6.6 Action-Type Analysis
	6.7 Sample Efficiency
	6.8 Scalability
	6.9 Figures

	7 Discussion
	8 Conclusion
	References

