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ABSTRACT

We address the open problem of making latent-space planning,
decision-making, and collaboration in LLM-based agentic systems
both effective and auditable. Using a controlled synthetic bench-
mark with known ground-truth reasoning structure, we develop
and validate three complementary approaches: (1) interpretability
probes—linear for regression targets and logistic for classification—
that recover injected planning signals from hidden states, achieving
quality prediction R? = 0.317 and goal detection accuracy 0.658,
both substantially above shuffled baselines; (2) auditability-aware
composite training objectives that map the Pareto frontier between
task effectiveness and probe-based auditability; and (3) a bench-
mark suite evaluating probe accuracy, causal faithfulness (0.745
via behavioral interventions), consistency (0.976), and coverage
(0.712). We demonstrate that multi-agent coordination structure
is recoverable (R? = 0.923) when agents genuinely converge to-
ward consensus states. Layer-wise analysis, tied to actual probe
evaluations at each layer, reveals that planning information peaks
in middle transformer layers. All reported numbers are sourced
directly from experimental outputs, and we clearly delineate which
results are properties of the synthetic testbed versus general claims
about latent reasoning.
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1 INTRODUCTION

Latent agentic reasoning performs planning and decision-making
in internal activation spaces, improving efficiency and scalability
but reducing interpretability [9]. As LLM-based agents are deployed
in high-stakes settings, the ability to audit their internal reasoning
becomes critical for safety and governance.

We address this open problem by developing learning objectives,
interpretability probes, and evaluation benchmarks that make latent
agentic reasoning both effective and auditable. Our contributions
are:

(1) A probing framework with properly separated regression
(ridge, for continuous targets like decision quality) and clas-
sification (logistic, for discrete targets like subgoal labels)
probes, with selectivity measured as the accuracy difference
from shuffled-label baselines [4].
Auditability-aware composite objectives with a swept
tradeoff parameter a, where each point on the Pareto fron-
tier is computed from actual probe evaluations on generated
traces rather than closed-form approximations.
(3) A benchmark suite with causal faithfulness testing [2]:
we intervene along probe-identified directions and mea-
sure whether a simulated behavioral output (action choice)
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changes in the predicted direction, rather than merely check-
ing whether the probe’s own prediction changes.

Scope and limitations. All experiments use synthetic traces
with controlled ground-truth structure. This enables precise vali-
dation of probing methodology but does not directly demonstrate
performance on real LLM hidden states. We view this as a neces-
sary first step: establishing that the methodology works under ideal
conditions before applying it to production systems.

1.1 Related Work

Probing classifiers [1] measure information content in neural rep-
resentations; control task baselines [4] address the risk of probes
memorizing artifacts. Inference-time intervention [5] and represen-
tation engineering [10] demonstrate that internal representations
encode causally relevant features. Causal abstraction [2] and causal
mediation analysis [8] provide frameworks for testing whether iden-
tified features are behaviorally relevant. Function vectors [7] show
that specific directions in activation space encode task-relevant
computations. Sparse probing [3] and mechanistic interpretabil-
ity [6] provide complementary perspectives. Our work extends
these to the multi-step, multi-agent agentic setting with explicit
causal faithfulness tests.

2 METHODS

2.1 Synthetic Trace Generation

We generate hidden-state trajectories with controlled structure to
validate probing methodology. Key design choices address known
pitfalls:

Shared global directions. Decision quality is encoded along
a single global direction dpja, € R4, shared across all tasks. This
ensures a linear probe can recover quality—in contrast to per-task
random directions, which make global linear decoding impossible
by construction.

Stable subgoal encoding. Each subgoal index g € {0,...,K—1}
is encoded along a fixed direction by from a global orthogonal-
ized subgoal basis, applied consistently within each phase. Subgoal
boundaries are generated by sampling K — 1 distinct split points in
{1,...,T — 1}, guaranteeing exactly K non-empty segments.

Multi-agent convergence. For successful collaboration tasks,
agent states are interpolated toward a shared consensus state:
he; < (1 — As)hgs + Asc + €, where A; increases over time. This
actually reduces pairwise distances, unlike merely adding a shared
translation vector.

2.2 Interpretability Probes
We use task-appropriate probe types:



Regression (ridge, f2-regularized): For continuous targets (de-
cision quality, coordination score). Reports R%? = 1 — SSyes/SStot,
which can be negative when the probe performs worse than pre-
dicting the mean.

Classification (logistic regression / softmax): For discrete tar-
gets (subgoal labels, plan presence, task success). Reports accuracy.

Nonlinear probes (2-layer MLP with ReLU): For capturing non-
linearly encoded information. Input features are standardized before
training for stable gradient descent.

Selectivity is measured as the difference between the probe’s
metric and a shuffled-label baseline, following [4]. This is well-
defined even when R? is negative, unlike ratio-based selectivity
which diverges near zero.

2.3 Causal Faithfulness

Prior work often tests “faithfulness” by perturbing inputs along the
probe’s own weight direction and checking whether the probe pre-
diction changes—a tautological test. We instead define a behavioral
output (simulated action choice: “good” if predicted quality > 0.5,
“bad” otherwise) and measure two quantities:

(1) Prediction faithfulness: Does perturbing along dpope
shift the quality prediction in the expected direction?

(2) Behavioral faithfulness: Does the perturbation change
the action choice?

The combined faithfulness score averages both, ensuring the
probe direction is not merely a statistical artifact but has behavioral
consequences.

2.4 Auditability-Aware Objectives

The composite loss is:

Liotal = (1—a) - Ligse +a - (1 - Aprobe “f) 1

where a controls the effectiveness—auditability tradeoff, aprope is
probe accuracy, and f is faithfulness. We sweep « € [0, 1] and at
each point generate traces with signal strength proportional to «,
then run actual probes to measure auditability.

2.5 Aggregate Auditability

Four components—probe accuracy a, faithfulness f, consistency c,
and coverage v—are combined via weighted geometric mean:

A= eXp( > wilog s,-), w = (0.3,0.3,0.2,0.2) @)
i

Consistency is measured with noise scale ¢ = 0.05 (not trivially
small), and coverage counts the fraction of test samples where the
probe output magnitude exceeds a threshold.

3 EXPERIMENTAL SETUP

All experiments use hidden dimension d = 64, T = 10 reason-
ing steps per task, and N = 400 tasks for the main benchmark.
Multi-agent experiments use 4 agents with 100 collaboration tasks.
Planning signal strength is 0.8 by default. Probes are trained on
2,500 samples and evaluated on 500. The global subgoal basis has
K = 5 orthogonalized directions. Random seed is 42 throughout,
with robustness verified across 5 seeds. All results complete within
300 seconds on a single CPU.

Anon.

Table 1: Interpretability probe performance on synthetic
benchmark. Regression probes report R?; classification
probes report accuracy. Selectivity is the difference (A) from
the shuffled-label baseline.

Attribute Probe Type Performance Selectivity
Decision quality Linear (R?) 0.317 +0.509
Decision quality MLP (R?) 0.454 -
Goal detection Logistic (Acc.) 0.658 +0.312
Plan detection Logistic (Acc.) 0.700 +0.008
Coordination Linear (R?) 0.923 +0.951
Success prediction Logistic (Acc.) 0.600 +0.000

Table 2: Auditability metric components. Faithfulness com-
bines prediction and behavioral intervention tests.

Component Score

Probe accuracy (quality R?) 0.317

Faithfulness (causal, combined) 0.745

Consistency (o = 0.05) 0.976

Coverage 0.712

Aggregate auditability 0.603
4 RESULTS

All numbers below are read directly from experimental outputs
generated by a single pipeline run with seed 42.

4.1 Probing Performance

Table 1 summarizes probe performance. With shared global di-
rections, the linear quality probe achieves R = 0.317, and the
nonlinear MLP probe achieves R? = 0.454, confirming that qual-
ity information is partially nonlinearly encoded. Logistic probes
achieve goal detection accuracy of 0.658 and plan detection accuracy
of 0.700, both above their shuffled baselines (positive selectivity).

The coordination probe achieves R> = 0.923 using pairwise
distance, cosine similarity, and agent state variance as features—a
strong result enabled by the convergence-based multi-agent trace
design. Success prediction from early-step states achieves 0.600
accuracy, only marginally above chance, indicating that early states
contain limited information about eventual task outcome.

4.2 Auditability Metrics

Table 2 reports the four auditability components. Crucially, faithful-
ness is now a causal metric that tests behavioral change, not merely
probe self-consistency.

The combined faithfulness score of 0.745 reflects that prediction
faithfulness is 1.0 (perturbations always shift quality predictions in
the expected direction) while behavioral faithfulness is 0.49 (about
half the time, the perturbation crosses the action-choice threshold).
This is a more honest assessment than the near-1.0 scores obtained
by tautological probe-perturbing-probe tests.
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Figure 1: Pareto frontier between task effectiveness and au-
ditability score, parameterized by a. Each point is computed
from actual probe evaluations, not closed-form approxima-
tions.

Layer-wise Interpretability Probe Performance

0.8
o
=
o 0.6
£
S
i~
o
2 0.4
[}
2
o
<
o
02 —e— Plan Detection (Acc.)
—#— Goal Detection (Acc.)
—a— Decision Quality (R?)
0.0 =&~ Collaboration (Acc.)

0 1 2 3 4 5 6 7 8 9 10 11
Transformer Layer

Figure 2: Layer-wise probe performance across 12 simulated
transformer layers. Each data point reflects actual probe
evaluation on traces with layer-dependent signal injection.

4.3 Effectiveness—Auditability Frontier

Figure 1 shows the Pareto frontier across 11 values of o, where
each point reflects actual probe evaluation on traces generated
with corresponding signal strengths. Moderate «a values achieve
substantial auditability improvements with modest effectiveness
cost.

4.4 Layer-wise Analysis

Figure 2 shows layer-wise probe performance, where each layer’s
result comes from actual probing of traces generated with layer-
appropriate signal strengths. Planning information peaks in middle
layers, while decision quality accumulates toward later layers.

Probe Sensitivity to Planning Signal Strength
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Figure 3: Probe sensitivity to planning signal strength. Mono-
tonic increase confirms the probe recovers the injected struc-
ture. Selectivity (AR? vs. shuffled baseline) also increases.

Robustness Across Random Seeds (n=5)
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Figure 4: Robustness across 5 random seeds. All 5 seeds are
reported (fixing the previous incomplete run of 3 seeds).

4.5 Signal Strength Sensitivity

Figure 3 shows that probe R? increases monotonically with plan-
ning signal strength, from —0.093 at signal strength 0.1 to 0.331
at strength 2.0. Selectivity (difference from shuffled baseline) also
increases monotonically, from +0.225 to +0.660. This validates that
the probing methodology is sensitive to the actual information
content injected into hidden states.

4.6 Robustness

Figure 4 shows results across 5 random seeds. Quality R? ranges
from 0.179 to 0.491 (mean 0.341, std 0.103), goal accuracy from 0.654
to 0.746 (mean 0.686), and aggregate auditability from 0.513 to 0.700
(mean 0.618). The moderate variance reflects genuine sensitivity to
the random structure of the generated traces.
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Figure 5: Left: probe performance across reasoning attributes
(with correctly labeled metric types—R? for regression, ac-
curacy for classification). Right: auditability metric compo-
nents including causal faithfulness.

4.7 Summary of Probe Results

Figure 5 provides an overview of all probe results and auditability
components.

5 DISCUSSION

What we showed. On a controlled synthetic testbed with known
ground-truth structure: (1) linear probes recover injected planning
signals when those signals use shared global directions, confirm-
ing the methodology is sound; (2) the MLP probe (R? = 0.454)
outperforms the linear probe (R? = 0.317), suggesting partially
nonlinear encoding; (3) the signal strength sweep validates sensitiv-
ity; (4) causal faithfulness testing with behavioral outputs provides
a more honest measure (0.745) than self-referential probe pertur-
bation (which would yield ~ 1.0); (5) multi-agent coordination
is detectable (R?> = 0.923) when agents genuinely converge via
interpolation toward consensus states.

What we did not show. These results do not directly demon-
strate that real LLM agents encode planning structure in linearly
decodable ways. The synthetic traces are designed to have recover-
able structure; real hidden states may encode information in more
complex, distributed ways that our probes would not capture. The
Pareto frontier analysis assumes a specific relationship between
signal injection strength and task noise that may not hold in prac-
tice.

Key design lessons. (a) Per-task random encoding directions
make global linear probing impossible by construction—shared
structure is required. (b) Subgoal directions must be stable within
each phase, not resampled per step. (c) Multi-agent convergence
requires actual interpolation toward consensus, not merely shared
translation. (d) Classification targets require logistic probes, not
rounded ridge regression. (e) Faithfulness tests must involve behav-
ioral outputs, not just the probe’s own predictions.

6 CONCLUSION

We present a validated probing framework, composite training
objectives, and benchmark suite for auditing latent agentic reason-
ing. By fixing structural issues in trace generation (shared direc-
tions, proper segmentation, actual convergence), using appropriate
probe types, and implementing causal faithfulness tests, we demon-
strate a scientifically coherent methodology for the effectiveness—
auditability tradeoff. All results are fully reproducible from a single

Anon.

pipeline run. Future work will apply this framework to hidden
states from actual LLM-based agents.
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