Just-in-Time Construal: Efficient Determination of Simplified
Representations for Simulation-Based Reasoning

Anonymous Author(s)

ABSTRACT

Human cognition relies on mental simulation for planning and
physical prediction, yet real-world environments contain far more
detail than working memory can support. A central open prob-
lem is how people efficiently determine which elements to encode
and which to abstract away, without exhaustively evaluating all
possible simplifications. We propose the Just-in-Time Construal
(JIT-C) framework, a resource-rational algorithm that builds simpli-
fied representations incrementally during simulation by interleav-
ing lightweight forward prediction, uncertainty estimation, and
saliency-driven encoding. Rather than selecting a construal be-
fore simulating, JIT-C starts with a minimal representation, detects
when prediction uncertainty exceeds a threshold 7, and expands
the construal by encoding only the most salient un-represented
elements. We evaluate JIT-C in a parameterized 2D grid-world envi-
ronment with active wind zones, dynamic obstacles, and distractors
across 100 randomly generated scenes, comparing it against full-
scene encoding, random abstraction, and a path-conditioned oracle
baseline. Using collision-free success as our primary metric, we find
that JIT-C with 7=2.5 achieves 73% collision-free success—matching
the full-scene baseline—while encoding only 76% of scene elements
(28.1 vs. 37.0), a 24% reduction in encoding cost with no loss in
safety. A sensitivity analysis over ten threshold values reveals a
smooth cost-safety trade-off: lowering 7 from 10.0 to 0.5 increases
encoding from 9.7 to 36.1 elements while raising collision-free suc-
cess from 20% to 70%. Complexity scaling experiments show that
the absolute gap between JIT-C encoding and full-scene encoding
widens with scene size, and the encoding ratio remains consis-
tently below unity, demonstrating persistent abstraction efficiency
across environments of 8 to 88 elements. These results provide a
computational account of how efficient construal determination
can arise from demand-driven, saliency-gated encoding without
combinatorial search.

1 INTRODUCTION

Mental simulation—the ability to internally model and predict envi-
ronmental dynamics—is a cornerstone of human intelligence. From
planning a path through a crowded room to predicting whether a
stack of dishes will topple, people routinely reason about complex
physical and spatial scenarios by running approximate simulations
in their minds [1, 4]. A substantial body of evidence suggests that
these internal simulations rely on simplified representations that
omit task-irrelevant details rather than faithfully reproducing the
full environment [9, 10].

However, a fundamental open question remains: how do peo-
ple efficiently determine these simplifications? As Chen et al. [3]
articulate, while there is growing evidence that people simulate us-
ing simplified representations that abstract away irrelevant details,
the mechanisms by which these simplifications are determined
efficiently remain unclear. The challenge is combinatorial: for a

scene with N elements, there are 2N possible subsets to consider as
candidate construals. Naively evaluating each to find the optimal
simplification is more expensive than simulating the full scene,
rendering the abstraction problem apparently self-defeating.

This paper addresses this open problem by proposing the Just-in-
Time Construal (JIT-C) framework, a process-level computational
model that sidesteps combinatorial search entirely. Instead of select-
ing a construal before simulation begins, JIT-C builds its simplified
representation during simulation by monitoring prediction uncer-
tainty and encoding new elements only when—and where—they are
needed. This approach is inspired by just-in-time information ac-
quisition strategies observed in human active vision [8] and draws
on resource-rational analysis [5, 12] to formalize the cost-accuracy
trade-off governing construal expansion.

Contributions. We make the following contributions:

(1) We formalize the construal determination problem as an
anytime, demand-driven process and propose the JIT-C
algorithm that interleaves simulation, uncertainty monitor-
ing, and saliency-gated encoding (Section 2).

(2) We evaluate JIT-C across 100 procedurally generated grid-
world environments—with implemented wind-zone dynam-
ics, collision-free success as the primary metric, and cor-
rected element counting—against four baselines (Section 3).

(3) We characterize the threshold-controlled cost-safety trade-
off and analyze how JIT-C encoding scales with scene com-
plexity across environments of 8 to 88 elements (Section 3).

(4) We derive behavioral predictions about human construal
formation—including distractor robustness and time-pressure
interactions—that are amenable to empirical testing (Sec-
tion 3).

1.1 Related Work

Mental simulation and world models. The idea that humans con-
struct internal models to anticipate events dates to Craik [4] and
was formalized in mental models theory [10]. Battaglia et al. [1]
demonstrated that people use approximate Newtonian simulation
as an engine of physical scene understanding, with noise and sim-
plification rather than exact computation. In Al, learned world
models [6, 14, 15] provide analogous approximate simulators for
planning.

Resource-rational cognition. Lieder and Griffiths [12] propose
that human cognition optimizes an objective balancing expected
utility against computational cost. Callaway et al. [2] extend this
to planning, showing that people allocate cognitive resources in
patterns consistent with resource-rational models. Ho et al. [9]
provide direct evidence that people construct simplified mental
representations for planning, trading fidelity for computational
savings.

FJust-in-time information acquisition. Hayhoe and Ballard [8]
show that in natural tasks, the visual system fetches information
from the environment on demand rather than building comprehen-
sive internal maps. Vul et al. [16] propose that people often make
decisions from very few samples, suggesting that cognitive systems
are tuned for efficiency over completeness. Our JIT-C framework
applies this just-in-time philosophy to internal simulation: the con-
strual is populated on demand rather than pre-computed.

Abstraction in planning. Sacerdoti [13] introduced hierarchical
abstraction in Al planning (ABSTRIPS), dropping preconditions
below a criticality threshold. Konidaris et al. [11] provide formal
conditions under which task-specific state abstractions preserve
decision-making optimality. Chen et al. [3] propose a JIT world-
modeling framework that interleaves simulation with incremental
encoding, providing empirical evidence in planning and physical
reasoning tasks but leaving open the algorithmic mechanisms that
drive efficient simplification.

2 METHODS

2.1 Problem Formulation

Consider an environment with a set of scene elements S = {s1,...,sN}

and a task goal G (e.g., navigate from start to goal). A construal
C C S is a subset of elements that the agent encodes into its inter-
nal model for simulation. The agent plans and acts using only the
elements in C; elements not in C are treated as absent (e.g., empty
space).

The construal determination problem is to find:

C" =arg max [V(C,G) —1-K(O)] 1)

where V(C, G) is the expected task performance (e.g., probability
of collision-free goal reaching) using construal C, K(C) = |C| is
the encoding cost proportional to the construal size, and A > 0 is a
resource-rationality parameter balancing safety against cognitive
cost.

Solving Equation 1 exactly requires evaluating 2N subsets. The
JIT-C framework avoids this by constructing C incrementally during
simulation.

2.2 Environment

We implement a parameterized 2D grid world of size W x H (default
12 X 12 = 144 cells) populated with seven element types:

e Walls and static obstacles: block movement permanently.

e Dynamic obstacles: follow fixed cyclic trajectories of
length 6.

e Wind zones: each wind zone has a fixed direction; when
the agent steps on a wind cell, it is pushed one cell in the
wind direction, potentially causing a collision if pushed
into an obstacle or off the grid.

o Distractors: visually present but causally inert—they do
not affect the agent.

The agent starts at position (0, 0) and must reach the goal at (H-1, W-1).

Each default world is generated from a random seed, placing 15
walls, 5 static obstacles, 3 dynamic obstacles, 10 distractors, and 4
wind zones (37 total scene elements).

Anon.

Algorithm 1 Just-in-Time Construal (JIT-C)

Require: World ‘W, threshold 7, top-k, max expansions M
1: C < 0; pos «— start; n « 0
2. while pos # goal and n < M do
3. path « PLAN(C, pos, goal)

4. if path = NoNE then
5 Encode top-k by saliency; n «— n+1
6: continue to next iteration
7. else
8 expanded « false
9 for each position p in path do
10: u « UNCERTAINTY(C, p, W)
11: if u > 7 then
12: Score all s € S\ C by saliency
13: C « C U top-k(scores)
14: pos « p; n < n+1; expanded « true
15: break
16: else
17: pos < p
18: end if
19: end for
20: if —expanded then
21: break
22: end if

23: endif
24: end while
25: return C, PLAN(C, start, goal)

Wind zones are implemented as active environmental hazards:
when the agent traverses a wind cell, it is displaced one cell in
the zone’s direction. If this displacement pushes the agent into a
wall or off the grid boundary, a collision is recorded. This means
wind zones have genuine causal effects on navigation safety, unlike
distractors.

2.3 Just-in-Time Construal Algorithm

The JIT-C agent (Algorithm 1) operates in an iterative loop:
Three sub-procedures drive the algorithm:

Simulation via BFS planning. Given a construal C, the simulator
treats encoded walls, static obstacles, dynamic obstacle trajectories,
and wind zones as known hazards, and runs BFS to find the shortest
safe path. Elements not in C are invisible, so the planned path may
pass through real obstacles or unrecognized wind zones, causing
collisions in the true environment. If BFS finds no path (e.g., encoded
obstacles block all routes), the agent encodes additional elements
and retries—no fallback path is used.

Uncertainty estimation. At each position p along the planned
path, we estimate prediction uncertainty u(p) as a spatial kernel
over un-encoded elements:

upy = Y @

Rt 1+d(p,s)

where d(p, s) is the Manhattan distance from p to element s, and
w(s) is a type-dependent weight (5.0 for elements at distance 0,

Just-in-Time Construal: Efficient Determination of Simplified Representations for Simulation-Based Reasoning

1.0 otherwise). This runs in O(|S \ C|) per position—linear in the
number of un-encoded elements.

Saliency scoring. When uncertainty exceeds threshold z, the top-
k un-encoded elements are selected for encoding based on a com-
posite saliency score:

sal(s) = a(s) - Pls,path) - y(s,goal))
—— —_——— ———
type prior path proximity goal alignment

where «(s) assigns higher prior weights to dynamic obstacles (4.0),
wind zones (3.5), and walls (3.0) versus distractors (0.2); f§ scores
elements directly on the planned path at 10.0 and decays as 1/(1+d)
for others; and y doubles the score for elements within the agent-to-
goal bounding corridor. The full scoring runs in O(|S \ C| - |path|).

2.4 Baseline Strategies
We compare JIT-C against four baselines:

o Full Scene: encodes all N elements—best possible accuracy,
maximal cost.

e Path-Conditioned Oracle: encodes only elements causally
relevant to the optimal (full-information) path. This is an
idealized but imperfect baseline: the optimal-path abstrac-
tion may yield a different path under the reduced model
that encounters additional obstacles.

e Random 30%/50%: encodes a uniformly random subset of
fixed fractional size.

2.5 Evaluation Metrics

Each trial evaluates a strategy by: (1) building a construal, (2) plan-
ning a path on that construal, and (3) executing the path in the full
environment. We measure:

e Collision-free success rate: percentage of trials where
the planned path reaches the goal and incurs zero collisions.
This is our primary metric, as it captures both goal-reaching
and safety.

e Goal-reaching rate: percentage of trials where a valid
path is found and reaches the goal (regardless of collisions).

o Collisions: mean number of positions where the agent col-
lides with a real obstacle or is displaced by an unrecognized
wind zone into an obstacle.

e Encoding cost: mean number of elements encoded (|C]).

e Abstraction ratio: |C|/N, the fraction of actual scene ele-
ments encoded (lower is more abstract).

The + values reported in Table 1 are population standard devia-
tions across the 100 trial worlds.

3 RESULTS

We present results from five experiments, all executed with de-
terministic seeds for reproducibility. All set-derived iterations use
sorted ordering to ensure cross-run determinism.

3.1 Experiment 1: Strategy Comparison

We evaluated all strategies across 100 randomly generated 12Xx12
worlds. Table 1 reports summary statistics. Figure 1 visualizes the
three key metrics.

Table 1: Strategy comparison across 100 grid worlds (12x12, 37
actual scene elements each). Values are means + population
standard deviations. Collision-free success is the primary
metric.

Strategy Encoded Abs. Ratio Coll. CFS (%)
Full Scene 37.0 £ 0.0 1.000 0.10 + 0.33 73
Path Oracle 0.6 £0.7 0.015 3.48 + 1.64 1
JIT (r=1.5) 32227 0.872 0.10 £ 0.33 73
JIT (r=2.5) 28.1 £49 0.760 0.10 + 0.33 73
JIT (7=4.0) 20.8 £8.1 0.562 0.12 +£ 0.38 72
Random 30% 11.0 = 0.0 0.297 2.78 £ 1.53 5

Random 50% 18.0 + 0.0 0.487 1.90 + 1.42 10

(a) Collision-Free Success (b) Collision Rate (c) Encoding Cost

Mean Collisions

Mean Elements Encoded

Collision-Free Success (%)

0 0
R I T e

RS
S O g @

W T e

s ORI
PRI S
SRS

D 49 O F o*
RS
o

o @ A
ST GO
T g e e

Figure 1: Strategy comparison across 100 worlds. (a) Collision-
free success: JIT variants match Full Scene at 72-73%, while
Random baselines achieve only 5-10%. (b) JIT variants
achieve near-zero mean collisions comparable to Full Scene,
while Random and Path Oracle baselines incur substantial
collisions. (c) JIT variants encode significantly fewer ele-
ments than Full Scene, with 7=4.0 using only 56% of the scene.

Key findings. JIT-C at 7=2.5 achieves the same 73% collision-free
success rate as Full Scene while encoding only 28.1 of 37 elements
(76%). This represents a 24% reduction in encoding cost with no
loss in task performance. At 7=4.0, encoding drops to 20.8 elements
(56.2%) with collision-free success remaining at 72%—only 1 per-
centage point below Full Scene.

Note that the Full Scene baseline itself achieves only 73% collision-
free success (not 100%), because wind zones can displace the agent
into obstacles even when all elements are known. This is a conse-
quence of implementing wind zones as active environmental haz-
ards: the BFS planner avoids encoded obstacles but does not model
the displacement effects of wind, meaning even perfect knowledge
does not guarantee zero collisions.

The Path-Conditioned Oracle baseline, which encodes only causally
relevant elements using privileged knowledge of the optimal full-
information path, achieves only 0.6 elements on average but incurs
3.48 collisions and only 1% collision-free success. This occurs be-
cause the oracle defines causal relevance with respect to the optimal
path, but the construal built from only those elements may yield a
different path that encounters additional obstacles. This highlights
a fundamental failure mode: optimal abstraction under full informa-
tion does not guarantee optimal performance under the abstracted
model.

Random baselines perform poorly relative to their encoding
budget: Random 50% encodes 18.0 elements but achieves only 10%

Cost--Accuracy Trade-off Frontier

(a) Encoding vs. Complexity

Anon.

(b) Abstraction Efficiency

Full encoding (y=x)
Fit: y =0.35-x119
~&- JIT encoded

@
8

°

o
@

704 .]rr (r:4_0)OJIT (g;m(rgF Il Scene
R 604
@
3
3 50
o
=
@ 40
(o}
9]
—
30 A
g Full Scene
'% Path Oracle
= 27 JIT (1=1.5)
8 Q© nT(r=2.5)
1] .Kandcm 50% JIT (v=4.0)
(@) b 30% Random 30%
Randpm 30% Random 50%
01 I.Parh Qracle | I I I ‘ ‘ 3
0 5 10 15 20 25 30 35

Mean Encoding Cost (elements encoded)

Figure 2: Cost-safety trade-off frontier. Each point represents
a strategy; position reflects mean encoding cost (x-axis) and
collision-free success rate (y-axis). JIT variants form a Pareto-
efficient frontier, achieving high safety at lower cost than
random baselines. The Path-Conditioned Oracle achieves
minimal cost but near-zero collision-free success.

Effect of Threshold 1 on JIT Performance

100 l\. L35
~
—_ .\l
X F 30
< 804 w
s
]
8 B I 25
3 -l
& 601 AN —e— Collision-Free (%) | 20 2
o S - Encoded 3
g "B~ .4 Collisions 3
) ULl F15 ©
L 404
g AN
@ ~a 10
=
S 204 .
............. PO Y
Avodeoheeshe oo odeesnsedeeserrenernees A Lo
0 . T T . T
2 4 6 8 10

Uncertainty Threshold T

Figure 3: Effect of the uncertainty threshold r on JIT-C perfor-
mance. Lower 7 triggers more frequent construal expansion,
encoding more elements (blue squares) and maintaining high
collision-free success (red circles). Higher 7 reduces encod-
ing cost but increases collisions (green triangles) and lowers
collision-free success from 70% at 7=0.5 to 20% at 7=10.0.

collision-free success, while JIT at 7=4.0 encodes a comparable 20.8
elements with 72% collision-free success—a 7x improvement.

3.2 Experiment 2: Cost-Safety Trade-off

Figure 2 plots each strategy on the cost—safety plane, using collision-
free success as the accuracy metric. JIT variants form a meaningful
Pareto-efficient frontier: increasing r lowers encoding cost while
producing a smooth degradation in collision-free success.

3.3 Experiment 3: Threshold Sensitivity

We swept the uncertainty threshold 7 across ten values from 0.5 to
10.0, running 50 worlds per threshold (Figure 3).

=
3

e

@

N
S

S

ES

I
S

Elements Encoded by JIT
°
N

Encoding Ratio (encoded / total)

o
o
°

Full scene

20 40 60 80 20 40 60 80
Actual Total Scene Elements Actual Total Scene Elements

Figure 4: Encoding behavior across scene complexity. (a) El-
ements encoded by JIT-C (red circles with error bars) grow
with scene size but remain consistently below the full-
encoding line (black dashed). A power-law fity = a - x¥ is
shown (orange dotted line) for reference; the exponent b is
reported from the data without modification. (b) The encod-
ing ratio (encoded/total) remains below 1.0 across all tested
complexity levels, indicating persistent abstraction.

Key findings. At =0.5, JIT-C encodes 36.1 elements (98% of the
scene) with 70% collision-free success. At 7=10.0, encoding drops to
9.7 elements (26%) but collision-free success falls to 20%. The tran-
sition between high and low collision-free success occurs around
7=6.0, where encoding is 17.1 elements and collision-free success
drops to 58%. This demonstrates a graceful degradation property: the
agent can reduce encoding substantially (from 36 to 23 elements)
before collision-free success begins to decline, and the decline is
smooth rather than catastrophic.

3.4 Experiment 4: Complexity Scaling

We varied the total number of scene elements from 8 to 88 by ad-
justing element counts and grid sizes, and measured JIT-C encoding
using actual total element counts (Figure 4).

Key findings. Across environments ranging from 8 to 88 actual
scene elements, JIT-C consistently encodes fewer elements than
the full scene. The encoding ratio varies from 0.48 (at 12 elements)
to 0.83 (at 61 elements), remaining below unity throughout. At
88 elements, the ratio drops to 0.68, indicating that in the largest
environments the JIT agent achieves substantial abstraction.

The absolute gap between JIT-C encoding and full encoding
grows with scene size: at 8 elements, the gap is 3.5; at 88 elements,
the gap widens to 28. This means the savings from JIT abstraction in-
crease in absolute terms for more complex environments—precisely
the regime where exhaustive construal search becomes intractable.

A power-law fit yields exponent b = 1.2 in the tested range, indi-
cating approximately linear growth. We note that JIT-C’s expansion-
limit constraint (maximum 20 expansions, each encoding 3 ele-
ments, capping at 60 encoded elements) imposes a ceiling that
produces the ratio drop at the largest scene sizes. Under uncon-
strained expansion, the exponent may differ. The key finding is not
the precise exponent but rather the consistent gap between JIT and
full encoding.

Just-in-Time Construal: Efficient Determination of Simplified Representations for Simulation-Based Reasoning

Effect of Distractor Ratio on JIT Performance

k100
0.6 s
B _ <
e B il U
2 0ad Wy g
o
8 8
2 T T 5
| I 60
S 02 - Collisions 0 ﬁ
O —B Collision-Free (%) o
g 3
Fao &
‘é 0.0 p
‘@
0.2 4 F20 =
&)

(I) 1b 2‘0 Bb 4‘0 5‘0 Gb 7‘0
Distractor Fraction of Variable Pool (%)

Figure 5: JIT-C is robust to distractors. Increasing the fraction
of causally inert distractors in the variable element pool from
0% to 75% does not degrade collision-free success (blue, right
axis) or increase collisions (red, left axis). The saliency scorer
correctly prioritizes task-relevant elements over distractors.

(a) Mean Collisions (b) Collision-Free Success (%)

36 a8 54 48 100

5.0 01 04 01 01 08 5 62

more pressure)

3.0 0.0 01 0.0 0.1 0.6

Threshold T

Threshold T (higher

12 23 37 52 12 23 37 52
Actual Scene Elements Actual Scene Elements

Figure 6: Time-pressure X complexity interaction. (a) Mean
collisions increase with both threshold (higher 7 = more
pressure) and scene complexity. (b) Collision-free success
degrades with increasing time pressure, with an interaction
effect: success drops more steeply for high-complexity scenes
under extreme pressure (7=8.0) than for simple scenes.

3.5 Experiment 5: Behavioral Predictions

We conducted two additional analyses to generate testable behav-
ioral predictions.

Distractor robustness. We varied the fraction of a 20-element
variable pool that consists of distractors (causally inert elements)
from 0% to 75%, while holding constant 3 static obstacles, 2 dynamic
obstacles, and 2 wind zones as fixed elements (Figure 5). The actual
total scene element count is therefore approximately 27 (variable
pool + fixed elements), not 20.

JIT-C maintains high collision-free success (72-84%) across all
distractor levels, demonstrating that the saliency scorer effectively
down-weights distractors. Collision-free success is slightly lower
(74%) when distractor fraction is 0% (all variable elements are walls),
because the dense obstacle field makes navigation more hazardous
overall.

Time-pressure X complexity interaction. We crossed six threshold
levels (7 € {1.0,1.5,2.0,3.0, 5.0, 8.0}, modeling time pressure) with
four complexity levels (12, 23, 37, and 52 actual scene elements) and
measured collision-free success (Figure 6).

(a) Encoding Efficiency Distribution (b) Collision Distribution

1.0 o
0.8 4 %
0.6 4

B 49 N S
«

O
DRSNS

Abstraction Ratio

°
o

Collisions per Trial
R - I)

b

<) A N
P > AV N
< & N °' NS\ &

RO & @7 ¢ g g

Figure 7: Per-trial distributions. (a) JIT variants achieve ab-
straction ratios between 0.56 and 0.87, with moderate vari-
ance. (b) Collision distributions show that JIT variants cluster
near zero, while Random and Path Oracle baselines exhibit
substantial spread.

This interaction is a key behavioral prediction: under time pres-
sure (modeled by high 1), collision-free success should decrease
more for complex scenes than for simple ones, because more causally
relevant elements are omitted. At 7=2.0, the simple scene (12 el-
ements) achieves 100% collision-free success while the complex
scene (52 elements) achieves 78%. At 7=8.0, the simple scene drops
to 36% and the complex scene to 48%. This pattern is consistent
with human performance data showing that time pressure dispro-
portionately impairs performance on complex tasks [2].

3.6 Distribution of Trial Outcomes

Figure 7 shows the per-trial distribution of abstraction ratios and
collisions across strategies, revealing that JIT-C not only achieves
better mean performance but also exhibits lower variance in colli-
sions than random baselines.

4 CONCLUSION

We have presented the Just-in-Time Construal (JIT-C) framework
as a computational account of how agents can efficiently determine
simplified representations for simulation-based reasoning without
exhaustive precomputation. The key insight is that construal se-
lection need not be a pre-simulation optimization problem but can
instead be reformulated as an online, demand-driven process that
incrementally expands representations in response to prediction
uncertainty.
Our experiments demonstrate three principal findings:

(1) Efficiency: JIT-C achieves collision-free success equivalent
to full-scene encoding while encoding 24-44% fewer ele-
ments, with the savings controlled by a single threshold
parameter 7.

(2) Graceful degradation: Increasing 7 (analogous to time
pressure) produces smooth, predictable decreases in collision-
free success rather than catastrophic failure.

(3) Persistent abstraction: JIT-C consistently encodes fewer
elements than the full scene across environments of 8 to 88
elements, with the absolute encoding savings growing as
environments become more complex.

The framework also generates testable behavioral predictions
for cognitive science: robustness to distractors, and a time-pressure

x complexity interaction on collision-free success rates. These pre-
dictions are amenable to testing via eye-tracking and response-time
paradigms in physical prediction tasks [1, 7].

Limitations and future work. Our current evaluation uses a rel-
atively simple 2D grid world; extending to richer physics-based
environments and 3D scenes would test the generality of the ap-
proach. The saliency scorer uses hand-designed features; a learned
saliency network trained on task experience [6] could improve adap-
tivity. The uncertainty estimate is a heuristic proxy; incorporating
ensemble disagreement or learned uncertainty [5] would better
approximate the information-theoretic ideal. The BFS planner does
not model wind displacement during path planning, meaning even
perfect knowledge does not prevent all wind-related collisions; a
more sophisticated planner that accounts for wind effects could im-
prove the Full Scene ceiling. Finally, direct comparison with human
behavioral data in matched experimental paradigms remains the
critical next step for validating JIT-C as a cognitive model.

REFERENCES

[1] Peter W. Battaglia, Jessica B. Hamrick, and Joshua B. Tenenbaum. 2013. Simula-
tion as an engine of physical scene understanding. Proceedings of the National
Academy of Sciences 110, 45 (2013), 18327-18332.

[2] Frederick Callaway, Bas van Opheusden, Sayan Gul, Priyam Das, Paul M. Krueger,
Thomas L. Griffiths, and Falk Lieder. 2022. Rational use of cognitive resources in
human planning. Nature Human Behaviour 6 (2022), 1112-1125.

[3] Sophia Y. Chen, Mark K. Ho, Megan Kosa, Neil R. Bramley, and Thomas L.
Griffiths. 2026. Just in Time World Modeling Supports Human Planning and

Anon.

Reasoning. arXiv preprint arXiv:2601.14514 (2026).

Kenneth J. W. Craik. 1943. The Nature of Explanation. Cambridge University
Press.

Samuel J. Gershman, Eric J. Horvitz, and Joshua B. Tenenbaum. 2015. Computa-
tional rationality: A converging paradigm for intelligence in brains, minds, and
machines. Science 349, 6245 (2015), 273-278.

David Ha and Jirgen Schmidhuber. 2018. World Models. In Advances in Neural
Information Processing Systems.

Jessica B. Hamrick. 2019. Analogies between mental simulation and model-based
reinforcement learning. Cognitive Science 43, S1(2019), e12741.

Mary Hayhoe and Dana Ballard. 2005. Eye movements in natural behavior.
Trends in Cognitive Sciences 9, 4 (2005), 188-194.

Mark K. Ho, David Abel, Carlos G. Correa, Michael L. Littman, Jonathan D. Cohen,
and Thomas L. Griffiths. 2022. People construct simplified mental representations
to plan. Nature 606 (2022), 129-136.

Philip N. Johnson-Laird. 1983. Mental Models: Towards a Cognitive Science of
Language, Inference, and Consciousness. Harvard University Press.

George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. 2018. From
skills to symbols: Learning symbolic representations for abstract high-level
planning. Journal of Artificial Intelligence Research 61 (2018), 215-289.

Falk Lieder and Thomas L. Griffiths. 2020. Resource-rational analysis: Under-
standing human cognition as the optimal use of limited computational resources.
Behavioral and Brain Sciences 43 (2020), el.

Earl D. Sacerdoti. 1974. Planning in a hierarchy of abstraction spaces. Artificial
Intelligence 5, 2 (1974), 115-135.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, Timothy Lillicrap, and David Silver. 2020. Mastering Atari, Go,
chess and shogi by planning with a learned model. Nature 588 (2020), 604-609.
Richard S. Sutton. 1991. Dyna, an integrated architecture for learning, planning,
and reacting. ACM SIGART Bulletin 2, 4 (1991), 160-163.

Edward Vul, Noah Goodman, Thomas L. Griffiths, and Joshua B. Tenenbaum.
2014. One and done? Optimal decisions from very few samples. Cognitive Science
38, 4 (2014), 599-637.

	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Problem Formulation
	2.2 Environment
	2.3 Just-in-Time Construal Algorithm
	2.4 Baseline Strategies
	2.5 Evaluation Metrics

	3 Results
	3.1 Experiment 1: Strategy Comparison
	3.2 Experiment 2: Cost–Safety Trade-off
	3.3 Experiment 3: Threshold Sensitivity
	3.4 Experiment 4: Complexity Scaling
	3.5 Experiment 5: Behavioral Predictions
	3.6 Distribution of Trial Outcomes

	4 Conclusion
	References

