
Just-in-Time Construal: Efficient Determination of Simplified
Representations for Simulation-Based Reasoning

Anonymous Author(s)

ABSTRACT
Human cognition relies on mental simulation for planning and

physical prediction, yet real-world environments contain far more

detail than working memory can support. A central open prob-

lem is how people efficiently determine which elements to encode

and which to abstract away, without exhaustively evaluating all

possible simplifications. We propose the Just-in-Time Construal
(JIT-C) framework, a resource-rational algorithm that builds simpli-

fied representations incrementally during simulation by interleav-

ing lightweight forward prediction, uncertainty estimation, and

saliency-driven encoding. Rather than selecting a construal be-

fore simulating, JIT-C starts with a minimal representation, detects

when prediction uncertainty exceeds a threshold 𝜏 , and expands

the construal by encoding only the most salient un-represented

elements. We evaluate JIT-C in a parameterized 2D grid-world envi-

ronment with active wind zones, dynamic obstacles, and distractors

across 100 randomly generated scenes, comparing it against full-

scene encoding, random abstraction, and a path-conditioned oracle

baseline. Using collision-free success as our primary metric, we find

that JIT-C with 𝜏=2.5 achieves 73% collision-free success—matching

the full-scene baseline—while encoding only 76% of scene elements

(28.1 vs. 37.0), a 24% reduction in encoding cost with no loss in

safety. A sensitivity analysis over ten threshold values reveals a

smooth cost–safety trade-off: lowering 𝜏 from 10.0 to 0.5 increases

encoding from 9.7 to 36.1 elements while raising collision-free suc-

cess from 20% to 70%. Complexity scaling experiments show that

the absolute gap between JIT-C encoding and full-scene encoding

widens with scene size, and the encoding ratio remains consis-

tently below unity, demonstrating persistent abstraction efficiency

across environments of 8 to 88 elements. These results provide a

computational account of how efficient construal determination

can arise from demand-driven, saliency-gated encoding without

combinatorial search.

1 INTRODUCTION
Mental simulation—the ability to internally model and predict envi-

ronmental dynamics—is a cornerstone of human intelligence. From

planning a path through a crowded room to predicting whether a

stack of dishes will topple, people routinely reason about complex

physical and spatial scenarios by running approximate simulations

in their minds [1, 4]. A substantial body of evidence suggests that

these internal simulations rely on simplified representations that

omit task-irrelevant details rather than faithfully reproducing the

full environment [9, 10].

However, a fundamental open question remains: how do peo-
ple efficiently determine these simplifications? As Chen et al. [3]

articulate, while there is growing evidence that people simulate us-

ing simplified representations that abstract away irrelevant details,

the mechanisms by which these simplifications are determined

efficiently remain unclear. The challenge is combinatorial: for a

scene with 𝑁 elements, there are 2
𝑁

possible subsets to consider as

candidate construals. Naively evaluating each to find the optimal

simplification is more expensive than simulating the full scene,

rendering the abstraction problem apparently self-defeating.

This paper addresses this open problem by proposing the Just-in-
Time Construal (JIT-C) framework, a process-level computational

model that sidesteps combinatorial search entirely. Instead of select-

ing a construal before simulation begins, JIT-C builds its simplified

representation during simulation by monitoring prediction uncer-

tainty and encoding new elements only when—and where—they are

needed. This approach is inspired by just-in-time information ac-

quisition strategies observed in human active vision [8] and draws

on resource-rational analysis [5, 12] to formalize the cost-accuracy

trade-off governing construal expansion.

Contributions. We make the following contributions:

(1) We formalize the construal determination problem as an

anytime, demand-driven process and propose the JIT-C

algorithm that interleaves simulation, uncertainty monitor-

ing, and saliency-gated encoding (Section 2).

(2) We evaluate JIT-C across 100 procedurally generated grid-

world environments—with implemented wind-zone dynam-

ics, collision-free success as the primary metric, and cor-

rected element counting—against four baselines (Section 3).

(3) We characterize the threshold-controlled cost–safety trade-

off and analyze how JIT-C encoding scales with scene com-

plexity across environments of 8 to 88 elements (Section 3).

(4) We derive behavioral predictions about human construal

formation—including distractor robustness and time-pressure

interactions—that are amenable to empirical testing (Sec-

tion 3).

1.1 Related Work
Mental simulation and world models. The idea that humans con-

struct internal models to anticipate events dates to Craik [4] and

was formalized in mental models theory [10]. Battaglia et al. [1]

demonstrated that people use approximate Newtonian simulation

as an engine of physical scene understanding, with noise and sim-

plification rather than exact computation. In AI, learned world

models [6, 14, 15] provide analogous approximate simulators for

planning.

Resource-rational cognition. Lieder and Griffiths [12] propose

that human cognition optimizes an objective balancing expected

utility against computational cost. Callaway et al. [2] extend this

to planning, showing that people allocate cognitive resources in

patterns consistent with resource-rational models. Ho et al. [9]

provide direct evidence that people construct simplified mental

representations for planning, trading fidelity for computational

savings.

Anon.

Just-in-time information acquisition. Hayhoe and Ballard [8]

show that in natural tasks, the visual system fetches information

from the environment on demand rather than building comprehen-

sive internal maps. Vul et al. [16] propose that people often make

decisions from very few samples, suggesting that cognitive systems

are tuned for efficiency over completeness. Our JIT-C framework

applies this just-in-time philosophy to internal simulation: the con-

strual is populated on demand rather than pre-computed.

Abstraction in planning. Sacerdoti [13] introduced hierarchical

abstraction in AI planning (ABSTRIPS), dropping preconditions

below a criticality threshold. Konidaris et al. [11] provide formal

conditions under which task-specific state abstractions preserve

decision-making optimality. Chen et al. [3] propose a JIT world-

modeling framework that interleaves simulation with incremental

encoding, providing empirical evidence in planning and physical

reasoning tasks but leaving open the algorithmic mechanisms that

drive efficient simplification.

2 METHODS
2.1 Problem Formulation
Consider an environmentwith a set of scene elementsS = {𝑠1, . . . , 𝑠𝑁 }
and a task goal 𝐺 (e.g., navigate from start to goal). A construal
𝐶 ⊆ S is a subset of elements that the agent encodes into its inter-

nal model for simulation. The agent plans and acts using only the

elements in 𝐶; elements not in 𝐶 are treated as absent (e.g., empty

space).

The construal determination problem is to find:

𝐶∗ = arg max

𝐶⊆S
[𝑉 (𝐶,𝐺) − 𝜆 · 𝐾 (𝐶)] (1)

where 𝑉 (𝐶,𝐺) is the expected task performance (e.g., probability

of collision-free goal reaching) using construal 𝐶 , 𝐾 (𝐶) = |𝐶 | is
the encoding cost proportional to the construal size, and 𝜆 > 0 is a

resource-rationality parameter balancing safety against cognitive

cost.

Solving Equation 1 exactly requires evaluating 2
𝑁

subsets. The

JIT-C framework avoids this by constructing𝐶 incrementally during

simulation.

2.2 Environment
We implement a parameterized 2D grid world of size𝑊 ×𝐻 (default

12 × 12 = 144 cells) populated with seven element types:

• Walls and static obstacles: block movement permanently.

• Dynamic obstacles: follow fixed cyclic trajectories of

length 6.

• Wind zones: each wind zone has a fixed direction; when

the agent steps on a wind cell, it is pushed one cell in the

wind direction, potentially causing a collision if pushed

into an obstacle or off the grid.

• Distractors: visually present but causally inert—they do

not affect the agent.

The agent starts at position (0, 0) andmust reach the goal at (𝐻−1,𝑊−1).
Each default world is generated from a random seed, placing 15

walls, 5 static obstacles, 3 dynamic obstacles, 10 distractors, and 4

wind zones (37 total scene elements).

Algorithm 1 Just-in-Time Construal (JIT-C)

Require: WorldW, threshold 𝜏 , top-𝑘 , max expansions𝑀

1: 𝐶 ← ∅; pos← start; 𝑛 ← 0

2: while pos ≠ goal and 𝑛 < 𝑀 do
3: path← Plan(𝐶, pos, goal)
4: if path = None then
5: Encode top-𝑘 by saliency; 𝑛 ← 𝑛 + 1
6: continue to next iteration

7: else
8: expanded← false

9: for each position 𝑝 in path do
10: 𝑢 ← Uncertainty(𝐶, 𝑝,W)
11: if 𝑢 > 𝜏 then
12: Score all 𝑠 ∈ S \𝐶 by saliency

13: 𝐶 ← 𝐶 ∪ top-𝑘 (scores)
14: pos← 𝑝; 𝑛 ← 𝑛+1; expanded← true

15: break
16: else
17: pos← 𝑝

18: end if
19: end for
20: if ¬expanded then
21: break
22: end if
23: end if
24: end while
25: return 𝐶 , Plan(𝐶, start, goal)

Wind zones are implemented as active environmental hazards:

when the agent traverses a wind cell, it is displaced one cell in

the zone’s direction. If this displacement pushes the agent into a

wall or off the grid boundary, a collision is recorded. This means

wind zones have genuine causal effects on navigation safety, unlike

distractors.

2.3 Just-in-Time Construal Algorithm
The JIT-C agent (Algorithm 1) operates in an iterative loop:

Three sub-procedures drive the algorithm:

Simulation via BFS planning. Given a construal 𝐶 , the simulator

treats encoded walls, static obstacles, dynamic obstacle trajectories,

and wind zones as known hazards, and runs BFS to find the shortest

safe path. Elements not in 𝐶 are invisible, so the planned path may

pass through real obstacles or unrecognized wind zones, causing

collisions in the true environment. If BFS finds no path (e.g., encoded

obstacles block all routes), the agent encodes additional elements

and retries—no fallback path is used.

Uncertainty estimation. At each position 𝑝 along the planned

path, we estimate prediction uncertainty 𝑢 (𝑝) as a spatial kernel
over un-encoded elements:

𝑢 (𝑝) =
∑︁

𝑠∈S\𝐶

𝑤 (𝑠)
1 + 𝑑 (𝑝, 𝑠) (2)

where 𝑑 (𝑝, 𝑠) is the Manhattan distance from 𝑝 to element 𝑠 , and

𝑤 (𝑠) is a type-dependent weight (5.0 for elements at distance 0,

Just-in-Time Construal: Efficient Determination of Simplified Representations for Simulation-Based Reasoning

1.0 otherwise). This runs in 𝑂 (|S \𝐶 |) per position—linear in the

number of un-encoded elements.

Saliency scoring. When uncertainty exceeds threshold 𝜏 , the top-

𝑘 un-encoded elements are selected for encoding based on a com-

posite saliency score:

sal(𝑠) = 𝛼 (𝑠)︸︷︷︸
type prior

· 𝛽 (𝑠, path)︸ ︷︷ ︸
path proximity

· 𝛾 (𝑠, goal)︸ ︷︷ ︸
goal alignment

(3)

where 𝛼 (𝑠) assigns higher prior weights to dynamic obstacles (4.0),

wind zones (3.5), and walls (3.0) versus distractors (0.2); 𝛽 scores

elements directly on the planned path at 10.0 and decays as 1/(1+𝑑)
for others; and 𝛾 doubles the score for elements within the agent-to-

goal bounding corridor. The full scoring runs in 𝑂 (|S \𝐶 | · |path|).

2.4 Baseline Strategies
We compare JIT-C against four baselines:

• Full Scene: encodes all 𝑁 elements—best possible accuracy,

maximal cost.

• Path-ConditionedOracle: encodes only elements causally

relevant to the optimal (full-information) path. This is an

idealized but imperfect baseline: the optimal-path abstrac-

tion may yield a different path under the reduced model

that encounters additional obstacles.

• Random 30%/50%: encodes a uniformly random subset of

fixed fractional size.

2.5 Evaluation Metrics
Each trial evaluates a strategy by: (1) building a construal, (2) plan-

ning a path on that construal, and (3) executing the path in the full

environment. We measure:

• Collision-free success rate: percentage of trials where
the planned path reaches the goal and incurs zero collisions.

This is our primary metric, as it captures both goal-reaching

and safety.

• Goal-reaching rate: percentage of trials where a valid

path is found and reaches the goal (regardless of collisions).

• Collisions: mean number of positions where the agent col-

lides with a real obstacle or is displaced by an unrecognized

wind zone into an obstacle.

• Encoding cost: mean number of elements encoded (|𝐶 |).
• Abstraction ratio: |𝐶 |/𝑁 , the fraction of actual scene ele-

ments encoded (lower is more abstract).

The ± values reported in Table 1 are population standard devia-

tions across the 100 trial worlds.

3 RESULTS
We present results from five experiments, all executed with de-

terministic seeds for reproducibility. All set-derived iterations use

sorted ordering to ensure cross-run determinism.

3.1 Experiment 1: Strategy Comparison
We evaluated all strategies across 100 randomly generated 12×12
worlds. Table 1 reports summary statistics. Figure 1 visualizes the

three key metrics.

Table 1: Strategy comparison across 100 gridworlds (12×12, 37
actual scene elements each). Values are means ± population
standard deviations. Collision-free success is the primary
metric.

Strategy Encoded Abs. Ratio Coll. CFS (%)

Full Scene 37.0 ± 0.0 1.000 0.10 ± 0.33 73

Path Oracle 0.6 ± 0.7 0.015 3.48 ± 1.64 1

JIT (𝜏=1.5) 32.2 ± 2.7 0.872 0.10 ± 0.33 73

JIT (𝜏=2.5) 28.1 ± 4.9 0.760 0.10 ± 0.33 73

JIT (𝜏=4.0) 20.8 ± 8.1 0.562 0.12 ± 0.38 72

Random 30% 11.0 ± 0.0 0.297 2.78 ± 1.53 5

Random 50% 18.0 ± 0.0 0.487 1.90 ± 1.42 10

Figure 1: Strategy comparison across 100worlds. (a) Collision-
free success: JIT variants match Full Scene at 72–73%, while
Random baselines achieve only 5–10%. (b) JIT variants
achieve near-zero mean collisions comparable to Full Scene,
while Random and Path Oracle baselines incur substantial
collisions. (c) JIT variants encode significantly fewer ele-
ments than Full Scene, with 𝜏=4.0 using only 56% of the scene.

Key findings. JIT-C at 𝜏=2.5 achieves the same 73% collision-free

success rate as Full Scene while encoding only 28.1 of 37 elements

(76%). This represents a 24% reduction in encoding cost with no

loss in task performance. At 𝜏=4.0, encoding drops to 20.8 elements

(56.2%) with collision-free success remaining at 72%—only 1 per-

centage point below Full Scene.

Note that the Full Scene baseline itself achieves only 73% collision-

free success (not 100%), because wind zones can displace the agent

into obstacles even when all elements are known. This is a conse-

quence of implementing wind zones as active environmental haz-

ards: the BFS planner avoids encoded obstacles but does not model

the displacement effects of wind, meaning even perfect knowledge

does not guarantee zero collisions.

The Path-ConditionedOracle baseline, which encodes only causally

relevant elements using privileged knowledge of the optimal full-

information path, achieves only 0.6 elements on average but incurs

3.48 collisions and only 1% collision-free success. This occurs be-

cause the oracle defines causal relevance with respect to the optimal

path, but the construal built from only those elements may yield a

different path that encounters additional obstacles. This highlights

a fundamental failure mode: optimal abstraction under full informa-

tion does not guarantee optimal performance under the abstracted

model.

Random baselines perform poorly relative to their encoding

budget: Random 50% encodes 18.0 elements but achieves only 10%

Anon.

Figure 2: Cost–safety trade-off frontier. Each point represents
a strategy; position reflects mean encoding cost (x-axis) and
collision-free success rate (y-axis). JIT variants form a Pareto-
efficient frontier, achieving high safety at lower cost than
random baselines. The Path-Conditioned Oracle achieves
minimal cost but near-zero collision-free success.

Figure 3: Effect of the uncertainty threshold 𝜏 on JIT-C perfor-
mance. Lower 𝜏 triggers more frequent construal expansion,
encodingmore elements (blue squares) andmaintaining high
collision-free success (red circles). Higher 𝜏 reduces encod-
ing cost but increases collisions (green triangles) and lowers
collision-free success from 70% at 𝜏=0.5 to 20% at 𝜏=10.0.

collision-free success, while JIT at 𝜏=4.0 encodes a comparable 20.8

elements with 72% collision-free success—a 7× improvement.

3.2 Experiment 2: Cost–Safety Trade-off
Figure 2 plots each strategy on the cost–safety plane, using collision-

free success as the accuracy metric. JIT variants form a meaningful

Pareto-efficient frontier: increasing 𝜏 lowers encoding cost while

producing a smooth degradation in collision-free success.

3.3 Experiment 3: Threshold Sensitivity
We swept the uncertainty threshold 𝜏 across ten values from 0.5 to

10.0, running 50 worlds per threshold (Figure 3).

Figure 4: Encoding behavior across scene complexity. (a) El-
ements encoded by JIT-C (red circles with error bars) grow
with scene size but remain consistently below the full-
encoding line (black dashed). A power-law fit 𝑦 = 𝑎 · 𝑥𝑏 is
shown (orange dotted line) for reference; the exponent 𝑏 is
reported from the data without modification. (b) The encod-
ing ratio (encoded/total) remains below 1.0 across all tested
complexity levels, indicating persistent abstraction.

Key findings. At 𝜏=0.5, JIT-C encodes 36.1 elements (98% of the

scene) with 70% collision-free success. At 𝜏=10.0, encoding drops to

9.7 elements (26%) but collision-free success falls to 20%. The tran-

sition between high and low collision-free success occurs around

𝜏=6.0, where encoding is 17.1 elements and collision-free success

drops to 58%. This demonstrates a graceful degradation property: the
agent can reduce encoding substantially (from 36 to 23 elements)

before collision-free success begins to decline, and the decline is

smooth rather than catastrophic.

3.4 Experiment 4: Complexity Scaling
We varied the total number of scene elements from 8 to 88 by ad-

justing element counts and grid sizes, and measured JIT-C encoding

using actual total element counts (Figure 4).

Key findings. Across environments ranging from 8 to 88 actual

scene elements, JIT-C consistently encodes fewer elements than

the full scene. The encoding ratio varies from 0.48 (at 12 elements)

to 0.83 (at 61 elements), remaining below unity throughout. At

88 elements, the ratio drops to 0.68, indicating that in the largest

environments the JIT agent achieves substantial abstraction.

The absolute gap between JIT-C encoding and full encoding

grows with scene size: at 8 elements, the gap is 3.5; at 88 elements,

the gapwidens to 28. This means the savings from JIT abstraction in-

crease in absolute terms for more complex environments—precisely

the regime where exhaustive construal search becomes intractable.

A power-law fit yields exponent 𝑏 ≈ 1.2 in the tested range, indi-

cating approximately linear growth.We note that JIT-C’s expansion-

limit constraint (maximum 20 expansions, each encoding 3 ele-

ments, capping at 60 encoded elements) imposes a ceiling that

produces the ratio drop at the largest scene sizes. Under uncon-

strained expansion, the exponent may differ. The key finding is not

the precise exponent but rather the consistent gap between JIT and

full encoding.

Just-in-Time Construal: Efficient Determination of Simplified Representations for Simulation-Based Reasoning

Figure 5: JIT-C is robust to distractors. Increasing the fraction
of causally inert distractors in the variable element pool from
0% to 75% does not degrade collision-free success (blue, right
axis) or increase collisions (red, left axis). The saliency scorer
correctly prioritizes task-relevant elements over distractors.

Figure 6: Time-pressure × complexity interaction. (a) Mean
collisions increase with both threshold (higher 𝜏 = more
pressure) and scene complexity. (b) Collision-free success
degrades with increasing time pressure, with an interaction
effect: success dropsmore steeply for high-complexity scenes
under extreme pressure (𝜏=8.0) than for simple scenes.

3.5 Experiment 5: Behavioral Predictions
We conducted two additional analyses to generate testable behav-

ioral predictions.

Distractor robustness. We varied the fraction of a 20-element

variable pool that consists of distractors (causally inert elements)

from 0% to 75%, while holding constant 3 static obstacles, 2 dynamic

obstacles, and 2 wind zones as fixed elements (Figure 5). The actual

total scene element count is therefore approximately 27 (variable

pool + fixed elements), not 20.

JIT-C maintains high collision-free success (72–84%) across all

distractor levels, demonstrating that the saliency scorer effectively

down-weights distractors. Collision-free success is slightly lower

(74%) when distractor fraction is 0% (all variable elements are walls),

because the dense obstacle field makes navigation more hazardous

overall.

Time-pressure × complexity interaction. We crossed six threshold

levels (𝜏 ∈ {1.0, 1.5, 2.0, 3.0, 5.0, 8.0}, modeling time pressure) with

four complexity levels (12, 23, 37, and 52 actual scene elements) and

measured collision-free success (Figure 6).

Figure 7: Per-trial distributions. (a) JIT variants achieve ab-
straction ratios between 0.56 and 0.87, with moderate vari-
ance. (b) Collision distributions show that JIT variants cluster
near zero, while Random and Path Oracle baselines exhibit
substantial spread.

This interaction is a key behavioral prediction: under time pres-

sure (modeled by high 𝜏), collision-free success should decrease

more for complex scenes than for simple ones, becausemore causally

relevant elements are omitted. At 𝜏=2.0, the simple scene (12 el-

ements) achieves 100% collision-free success while the complex

scene (52 elements) achieves 78%. At 𝜏=8.0, the simple scene drops

to 36% and the complex scene to 48%. This pattern is consistent

with human performance data showing that time pressure dispro-

portionately impairs performance on complex tasks [2].

3.6 Distribution of Trial Outcomes
Figure 7 shows the per-trial distribution of abstraction ratios and

collisions across strategies, revealing that JIT-C not only achieves

better mean performance but also exhibits lower variance in colli-

sions than random baselines.

4 CONCLUSION
We have presented the Just-in-Time Construal (JIT-C) framework

as a computational account of how agents can efficiently determine

simplified representations for simulation-based reasoning without

exhaustive precomputation. The key insight is that construal se-

lection need not be a pre-simulation optimization problem but can

instead be reformulated as an online, demand-driven process that

incrementally expands representations in response to prediction

uncertainty.

Our experiments demonstrate three principal findings:

(1) Efficiency: JIT-C achieves collision-free success equivalent

to full-scene encoding while encoding 24–44% fewer ele-

ments, with the savings controlled by a single threshold

parameter 𝜏 .

(2) Graceful degradation: Increasing 𝜏 (analogous to time

pressure) produces smooth, predictable decreases in collision-

free success rather than catastrophic failure.

(3) Persistent abstraction: JIT-C consistently encodes fewer

elements than the full scene across environments of 8 to 88

elements, with the absolute encoding savings growing as

environments become more complex.

The framework also generates testable behavioral predictions

for cognitive science: robustness to distractors, and a time-pressure

Anon.

× complexity interaction on collision-free success rates. These pre-

dictions are amenable to testing via eye-tracking and response-time

paradigms in physical prediction tasks [1, 7].

Limitations and future work. Our current evaluation uses a rel-

atively simple 2D grid world; extending to richer physics-based

environments and 3D scenes would test the generality of the ap-

proach. The saliency scorer uses hand-designed features; a learned

saliency network trained on task experience [6] could improve adap-

tivity. The uncertainty estimate is a heuristic proxy; incorporating

ensemble disagreement or learned uncertainty [5] would better

approximate the information-theoretic ideal. The BFS planner does

not model wind displacement during path planning, meaning even

perfect knowledge does not prevent all wind-related collisions; a

more sophisticated planner that accounts for wind effects could im-

prove the Full Scene ceiling. Finally, direct comparison with human

behavioral data in matched experimental paradigms remains the

critical next step for validating JIT-C as a cognitive model.

REFERENCES
[1] Peter W. Battaglia, Jessica B. Hamrick, and Joshua B. Tenenbaum. 2013. Simula-

tion as an engine of physical scene understanding. Proceedings of the National
Academy of Sciences 110, 45 (2013), 18327–18332.

[2] Frederick Callaway, Bas van Opheusden, Sayan Gul, PriyamDas, Paul M. Krueger,

Thomas L. Griffiths, and Falk Lieder. 2022. Rational use of cognitive resources in

human planning. Nature Human Behaviour 6 (2022), 1112–1125.
[3] Sophia Y. Chen, Mark K. Ho, Megan Kosa, Neil R. Bramley, and Thomas L.

Griffiths. 2026. Just in Time World Modeling Supports Human Planning and

Reasoning. arXiv preprint arXiv:2601.14514 (2026).
[4] Kenneth J. W. Craik. 1943. The Nature of Explanation. Cambridge University

Press.

[5] Samuel J. Gershman, Eric J. Horvitz, and Joshua B. Tenenbaum. 2015. Computa-

tional rationality: A converging paradigm for intelligence in brains, minds, and

machines. Science 349, 6245 (2015), 273–278.
[6] David Ha and Jürgen Schmidhuber. 2018. World Models. In Advances in Neural

Information Processing Systems.
[7] Jessica B. Hamrick. 2019. Analogies between mental simulation and model-based

reinforcement learning. Cognitive Science 43, S1 (2019), e12741.
[8] Mary Hayhoe and Dana Ballard. 2005. Eye movements in natural behavior.

Trends in Cognitive Sciences 9, 4 (2005), 188–194.
[9] Mark K. Ho, David Abel, Carlos G. Correa, Michael L. Littman, Jonathan D. Cohen,

and Thomas L. Griffiths. 2022. People construct simplified mental representations

to plan. Nature 606 (2022), 129–136.
[10] Philip N. Johnson-Laird. 1983. Mental Models: Towards a Cognitive Science of

Language, Inference, and Consciousness. Harvard University Press.

[11] George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. 2018. From

skills to symbols: Learning symbolic representations for abstract high-level

planning. Journal of Artificial Intelligence Research 61 (2018), 215–289.

[12] Falk Lieder and Thomas L. Griffiths. 2020. Resource-rational analysis: Under-

standing human cognition as the optimal use of limited computational resources.

Behavioral and Brain Sciences 43 (2020), e1.
[13] Earl D. Sacerdoti. 1974. Planning in a hierarchy of abstraction spaces. Artificial

Intelligence 5, 2 (1974), 115–135.
[14] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,

Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,

Thore Graepel, Timothy Lillicrap, and David Silver. 2020. Mastering Atari, Go,

chess and shogi by planning with a learned model. Nature 588 (2020), 604–609.
[15] Richard S. Sutton. 1991. Dyna, an integrated architecture for learning, planning,

and reacting. ACM SIGART Bulletin 2, 4 (1991), 160–163.

[16] Edward Vul, Noah Goodman, Thomas L. Griffiths, and Joshua B. Tenenbaum.

2014. One and done? Optimal decisions from very few samples. Cognitive Science
38, 4 (2014), 599–637.

	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Problem Formulation
	2.2 Environment
	2.3 Just-in-Time Construal Algorithm
	2.4 Baseline Strategies
	2.5 Evaluation Metrics

	3 Results
	3.1 Experiment 1: Strategy Comparison
	3.2 Experiment 2: Cost–Safety Trade-off
	3.3 Experiment 3: Threshold Sensitivity
	3.4 Experiment 4: Complexity Scaling
	3.5 Experiment 5: Behavioral Predictions
	3.6 Distribution of Trial Outcomes

	4 Conclusion
	References

