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ABSTRACT

The structured decomposition framework, in which large language
models populate OWL 2 ABox assertions while SWRL rules pro-
vide deterministic verification, has demonstrated performance im-
provements over few-shot prompting on tasks with conjunctive
classification logic. However, it remains unknown whether these
benefits extend to more complex logical structures. We present
a simulation study investigating this question across five cate-
gories of logical complexity: conjunction, disjunction, negation,
nested quantifiers, and mixed structures, each evaluated at varying
predicate counts (2-10). Our model incorporates logic-type-specific
attenuation factors that reflect known representational challenges
in SWRL (e.g., emulating disjunction via multiple rules, open-world
assumption conflicts for negation, DL-safety limitations for nested
quantifiers). Results show that simulated framework benefits per-
sist across all logic types after Holm-Bonferroni correction for 25
simultaneous tests (p < 0.05), though with meaningfully different
magnitudes: conjunctions yield the highest average improvement
(10.39%), followed by disjunctions (8.60%), negation (7.00%), nested
quantifiers (6.26%), and mixed structures (5.09%). Paired effect sizes
(dz) range from 2.46 to 6.36. These simulation results provide a
plausibility argument for the broader applicability of structured de-
composition, but do not constitute empirical validation; future work
should test with a real OWL/SWRL pipeline and LLM extraction
system.

1 INTRODUCTION

The integration of large language models (LLMs) with formal knowl-
edge representation has emerged as a promising approach to im-
proving the reliability of Al-driven classification tasks [7]. The
structured decomposition framework proposed by Sadowski et
al. [9] separates the reasoning process into two stages: LLMs popu-
late OWL 2 ABox assertions for individual predicates, and SWRL
rules provide deterministic verification of the classification logic.

While this framework has shown clear benefits on tasks whose
decision rules are simple conjunctions of predicates, the authors
note that whether these benefits extend to more complex logi-
cal structures—involving disjunctions, explicit negation, or nested
quantifiers—remains an open question. This gap is significant be-
cause real-world classification tasks frequently require such com-
plex logical forms.

In this paper, we present a simulation study that systematically
investigates this question. We model five levels of logical complexity
with logic-type-specific attenuation factors grounded in known
SWRL representational constraints, and evaluate across multiple
predicate counts with proper paired statistical analyses and multiple
comparison corrections. We emphasize that our results represent a
stylized plausibility model rather than empirical validation with a
deployed system.

2 RELATED WORK

Sadowski et al. [9] introduced the structured decomposition frame-
work and validated it on three binary classification tasks using
conjunctive SWRL rules. SWRL [4] extends OWL 2 [6] with Horn-
like rules, enabling expressive reasoning within ontological frame-
works.

Chain-of-thought prompting [10] has shown that decompos-
ing reasoning into steps improves LLM performance, providing
conceptual grounding for structured decomposition approaches.
Description logic foundations [5] and the OWL 2 primer [2] inform
our modeling of expressiveness constraints.

2.1 SWRL Representational Constraints

Several characteristics of SWRL are important for understanding
how complex logical structures map to rule-based verification:

e Disjunction: SWRL is Horn-like and does not natively
support disjunction in rule bodies. Disjunctive conditions
must be emulated through multiple rules with the same
consequent, introducing overhead.

e Negation: OWL operates under the open-world assump-
tion [8], making the assertion of negative facts inherently
difficult. Negation-as-failure or closed-world integrity con-
straints require additional mechanisms beyond standard
SWRL.

e Nested quantifiers: Standard SWRL does not support ex-
istential quantification in rule heads (creating new indi-
viduals). Complex quantifier nesting may require DL-safe
restrictions that limit expressiveness.

These constraints motivate our inclusion of logic-type-specific
attenuation factors in the simulation model.

3 METHODOLOGY
3.1 Logical Complexity Model

We define five categories of classification logic with increasing
complexity:
(1) Conjunction: p; A pa A ... A p, (baseline)
(2) Disjunction: (p1 V p2) A p3 A ... (emulated via multiple
SWRL rules)
(3) Negation: p; A —=p2 A ... (OWA conflicts)
(4) Nested quantifiers: Vx(P(x) — Jy(Q(x,y))) (DL-safety
limits)
(5) Mixed: Combinations of the above
Each category is evaluated at predicate counts n € {2, 4, 6, 8,10},
yielding 25 experimental conditions.

3.2 Simulation Framework

Complexity scoring. We compute a complexity score using a tanh
transform that preserves logic-type differentiation at all predicate



counts:

c(t,n) = tanh(1.2 - (n/nmax + 6¢)) (1)
where J; is a logic-type-specific penalty (0 for conjunction, 0.03
for disjunction, 0.06 for negation, 0.08 for nested quantifiers, 0.11
for mixed). Unlike a simple linear clip to [0, 1], the tanh transform
ensures that logic-type penalties remain visible even at n = npax.

Baseline accuracy. We model LLM baseline accuracy as:

N

1
@hase (1) = 2; X =1], Xi~Bem(ps)  (2)
where p; = ap — c(t,n) -y - n+¢, with ap = 0.82, y = 0.035,
€ ~ N(0,0.04%),and N = 500 samples per trial. This operationalizes
the sample count as binomial draws rather than leaving it unused.

Framework accuracy. The framework adds a verification boost
to the same baseline (ensuring proper pairing):

apy (6:1) = apse () +frap e DT (3)
where f = 0.12, e, ~ N(0,0.02%), and a; is a logic-type-specific

attenuation factor reflecting SWRL representational constraints:

Table 1: Logic-type attenuation factors and their rationale.

Logic Type ar  Rationale

Conjunction 1.00 Direct SWRL encoding
Disjunction 0.85 Multiple rules for OR

Negation 0.70 OWA conflicts
Nested Quant. 0.60 DL-safety limits
Mixed 0.50 Compounded limitations

Each condition is evaluated over 30 independent trials. Crucially,
each trial’s framework accuracy is computed from the same baseline
realization, ensuring that paired tests are genuinely paired.

3.3 Statistical Analysis

We use paired t-tests and Wilcoxon signed-rank tests. The effect
size is the paired d, = d/sg, where d and s; are the mean and
standard deviation of within-trial differences [1]. We report 95%
confidence intervals for the mean paired difference. To correct for 25
simultaneous tests, we apply the Holm-Bonferroni procedure [3].

4 RESULTS
4.1 Overall Benefits

Table 2 presents the summary results across all logic types. The
structured decomposition framework provides statistically signifi-
cant improvements for all five categories, with a clear ordering that
reflects the modeled SWRL limitations.

4.2 Complexity-Dependent Trends

Figure 1 shows how framework benefits vary with both logic type
and predicate count, with 95% confidence intervals. The key finding
is clear differentiation between logic types: conjunctions maintain
improvements above 9% even at 10 predicates, while mixed struc-
tures decline to approximately 4.3%.

Anon.

Table 2: Summary of simulated framework benefits by logic
type (Holm-corrected).

Logic Type Avg. Improv. (%)  Sig. Tests (Holm) Extends?
Conjunction 10.39 5/5 Yes
Disjunction 8.60 5/5 Yes
Negation 7.00 5/5 Yes
Nested Quantifier 6.26 5/5 Yes
Mixed 5.09 5/5 Yes
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Figure 1: Simulated framework accuracy improvement across
logical complexity conditions with 95% confidence intervals.

4.3 Effect Sizes

Figure 2 presents paired effect sizes (d;) across all experimental
conditions. All conditions show large effect sizes (d; > 2.4), indi-
cating practically significant improvements within the simulation
model.
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Figure 2: Paired effect sizes (d;) for all experimental condi-
tions. Color scale adapts to data range.
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4.4 Statistical Significance After Correction

All 25 experimental conditions remained significant after Holm—
Bonferroni correction (p,g; < 10~13), providing strong evidence
within the simulation that modeled benefits are not artifacts of
multiple testing. Figure 3 shows per-condition confidence intervals.

Forest Plot: Per-Condition Improvement (Holm-corrected)
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Figure 3: Forest plot of per-condition improvement with 95%
CIs. All intervals exclude zero.

4.5 Complexity Model Validation

Figure 4 demonstrates that the revised tanh-based complexity scor-
ing preserves differentiation between logic types even at n = 10,
unlike the original linear-clip model where all types converged to
1.0.
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Figure 4: Complexity scores under the revised tanh transform
preserve logic-type differentiation at all predicate counts.

5 DISCUSSION

5.1 Interpretation of Simulation Results

Our simulation suggests that the structured decomposition frame-
work’s benefits plausibly extend to complex logical structures, with
diminishing returns that reflect known representational constraints
of SWRL. The key observations are:

o Benefits persist across all tested logic types, but with mean-
ingfully different magnitudes that reflect SWRL’s expres-
siveness limitations.

o Conjunctions (direct SWRL encoding) show the largest im-
provements (~10.4%), while mixed structures (compounded
limitations) show the smallest (~5.1%).

e Negation and nested quantifiers impose measurable penal-
ties (attenuation factors of 0.70 and 0.60 respectively), con-
sistent with the difficulty of asserting negative facts under
OWA and the DL-safety constraints on existential quantifi-
cation.

e The improvement gap between logic types widens with
increasing predicate counts, suggesting that SWRL limita-
tions compound with task complexity.

5.2 Representational Strategies

For practitioners considering the framework for complex logic
types, our model suggests the following strategies:

o Disjunction: Encode as multiple SWRL rules with the same
consequent. The simulation predicts a modest 15% reduc-
tion in verification boost relative to conjunction.

e Negation: Consider closed-world integrity constraints or
negation-as-failure extensions rather than relying on stan-
dard OWL’s open-world assumption. The predicted 30%
attenuation motivates complementary verification mecha-
nisms.

o Nested quantifiers: Restrict to DL-safe patterns where
possible. The 40% predicted attenuation suggests iterative
refinement or specialized prompting may be needed.

5.3 Limitations

This work has several important limitations:

(1) Simulation, not empirical validation. The results come
from a parametric stochastic model, not from an LLM +
OWL/SWRL pipeline operating on real classification tasks.
The attenuation factors are informed estimates, not mea-
sured values.

(2) Structural guarantee of benefit. The simulation model
structurally ensures that the framework helps (boost is al-
ways positive in expectation). Real systems may exhibit
failure modes—extraction errors, mis-specified rules, rea-
soner timeouts—not captured here.

(3) Additive complexity model. Real ontologies may exhibit
interactions between logical connectives (e.g., negation in-
side quantifiers) that are not captured by additive penalty
terms.

(4) Parameter sensitivity. The specific improvement mag-
nitudes depend on chosen parameters (f, a;, y). Different
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