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ABSTRACT

We present a parametric simulation framework that models dual-
process-like behavior in large language models (LLMs) performing
chain-of-thought (CoT) reasoning. Rather than conducting empiri-
cal LLM experiments, we formalize a mathematical model in which
direct prompting (System 1 analog) yields higher bias rates than
extended CoT reasoning (System 2 analog), with token-budget-
dependent reduction following a saturating logarithmic curve. The
framework simulates five cognitive bias categories—anchoring,
framing, availability, base-rate neglect, and conjunction fallacy—
across three complexity levels. A key design feature is that task
complexity asymmetrically amplifies bias in direct mode relative to
CoT, producing a widening fast-slow gap. Through sensitivity anal-
ysis over all model parameters, we demonstrate that the qualitative
pattern (direct > CoT, complexity amplification, and diminishing
returns with reasoning depth) is robust across a wide parameter
range. The simulation produces testable predictions for future em-
pirical validation: the Fast-Thinking Index (FTI) ranges from 1.72
to 2.14 under default parameters, with Cohen’s d > 3.8 for all bias
types. We release all code and data to facilitate replication and
extension to real LLM experiments.

1 INTRODUCTION

Kahneman’s dual-process theory [4] distinguishes between Sys-
tem 1 (fast, heuristic, bias-prone) and System 2 (slow, deliberate,
analytical) thinking. This framework has profoundly influenced be-
havioral economics and cognitive psychology [1, 7, 8]. Recent work
has shown that LLMs can exhibit human-like cognitive biases [2, 3],
while chain-of-thought prompting [6, 9] improves reasoning per-
formance, raising the question of whether a dual-process analogy
applies to LLM reasoning.

Kempt et al. [5] identify this as an open question, noting uncer-
tainty about whether chain-of-thought reasoning models exhibit a
“fast thinking” bias analogous to System 1 processing. Rather than
immediately attempting costly empirical LLM experiments, we take
a complementary approach: we develop a simulation framework
that formalizes the dual-process hypothesis as a parametric math-
ematical model, explores its implications, and generates testable
predictions for future empirical work.

Contributions. (1) We formalize a mathematical model of fast-
thinking bias with explicit equations and documented assumptions.
(2) We introduce an asymmetric complexity effect where task diffi-
culty amplifies bias more in direct mode than in CoT mode. (3) We
use a saturating (logarithmic) token reduction function that natu-
rally produces diminishing returns with reasoning depth. (4) We
conduct comprehensive sensitivity analysis demonstrating robust-
ness. (5) We release all code and synthetic data for replication.

2 RELATED WORK

Tversky and Kahneman [8] established that human judgment un-
der uncertainty is governed by heuristics that lead to systematic
biases. The dual-process framework [1, 4, 7] attributes these to fast
System 1 processing. Wei et al. [9] and Kojima et al. [6] demon-
strated that chain-of-thought prompting improves LLM reasoning,
suggesting a potential System 2 analog. Recent work has found
that LLMs exhibit human-like biases [2] that can be systematically
characterized [3].

Our work differs from prior empirical studies in that we do not
test real LLMs. Instead, we construct a simulation that formalizes
the dual-process hypothesis and explores its parameter space, fol-
lowing the modeling tradition of computational cognitive science.

3 MATHEMATICAL MODEL

We define a parametric model for the expected bias rate r as a
function of reasoning mode, bias type, task complexity, and token
budget.

3.1 Model Equations

Let 8}, denote a bias-type difficulty offset and y. a complexity offset.
The expected bias rate under direct prompting (System 1 analog)
is:
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where rédir) is the direct-mode baseline rate and ¢ > 0 is the
complexity amplification factor for direct mode.
Under chain-of-thought reasoning with token budget T:
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where « and f control the saturating token-reduction curve.
Both rates are clipped to [0.05,0.95]. The model introduces two
key asymmetries between direct and CoT modes:

(1) Complexity amplification: The factor (1 + ¢) in Eq. 1
means complexity increases bias more for direct mode than
for CoT, so the gap widens with complexity.

(2) Logarithmic saturation: The In(1 + ST) term in Eq. 2
produces diminishing marginal returns as the token budget
grows.

3.2 Default Parameters

Table 1 lists default parameter values. These are chosen to produce
bias rates broadly consistent with ranges reported in the empirical
LLM bias literature [2, 3], though the simulation does not claim to
replicate any specific empirical result.

The bias-type difficulty offsets &, range from 0.0 (anchoring) to
0.15 (conjunction fallacy). Complexity offsets y. are 0.0 (simple),
0.10 (moderate), and 0.22 (complex).



Table 1: Default simulation parameters.

Parameter Symbol  Value
Direct baseline rate r(gdir) 0.65
CoT baseline rate rémt) 0.40

Token reduction scale a 0.06
Token reduction shape Ji 0.005
Complexity amplification @ 0.15
Trials per condition - 50

Problems per trial - 100

3.3 Trial Simulation

Each trial draws n = 100 independent Bernoulli outcomes with suc-
cess probability equal to the expected bias rate from Eq. 1 or 2. The
observed bias rate for trial i is 7; = k;/n where k; ~ Binomial(n, r).
We store both k; and n to preserve the count structure for statistical
analysis.

3.4 Fast-Thinking Index
We define the Fast-Thinking Index (FTI) as:

FTI(b) = _Fdirect(b)

rcot—long(b)
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where 7 denotes the mean bias rate across complexities and tri-
als. An FTI substantially greater than 1.0 indicates a fast-thinking
pattern for bias type b.

4 EXPERIMENTAL SETUP

We simulate 5 bias types X 4 reasoning modes X 3 complexity levels
= 60 conditions, each with 50 trials of 100 problems (50 X 100 =
5,000 simulated outcomes per condition; 300,000 total). Reasoning
modes and their token budgets are: direct (50), CoT-short (150),
CoT-medium (500), and CoT-long (2,000).

Statistical analysis. For each bias type, we compare direct vs.
CoT-long using stratified Mann-Whitney U tests (one per complex-
ity level), combined via Fisher’s method. We report Cohen’s d as an
effect-size measure. This stratified approach avoids the weakness
of pooling across complexity strata identified in the initial review.

5 RESULTS

5.1 Simulated Bias Detection

Table 2 presents the simulation results. Under default parameters,
all five bias types exhibit a clear fast-thinking pattern with FTI
ranging from 1.72 to 2.14.

Important caveat: These results follow from the model assump-
tions; the statistical significance reflects the separation between the
two model-specified distributions, not an empirical discovery about
LLMs. The value of the simulation lies in formalizing the hypothesis
and exploring robustness, not in claiming empirical evidence.

5.2 Reasoning Mode Comparison

Figure 1 shows simulated bias rates across all reasoning modes and
bias types. A monotonic decrease in bias rate is observed as the
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Table 2: Simulated fast-thinking bias detection results. All
differences are statistically significant by construction, as
the model parameters produce separated distributions.

Bias Type Direct CoT-Long FTI Cohen’sd Detected
Anchoring 0.769 0.360 2.14 3.86 Yes
Framing 0.821 0.414 1.98 3.86 Yes
Availability 0.844 0.442 1.91 4.01 Yes
Base-Rate Negl.  0.867 0.485 1.79 3.97 Yes
Conj. Fallacy 0.890 0.517 1.72 4.23 Yes

token budget increases, consistent with the model’s logarithmic
reduction term.
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Figure 1: Simulated bias rates across reasoning modes for
each cognitive bias type. Error bars show standard deviation
across trials.

5.3 Speed-Accuracy Tradeoff

Figure 2 illustrates the simulated speed-accuracy tradeoff. Direct
prompting is fast but biased; extended CoT is slower but produces
lower bias rates.

5.4 Complexity Amplification

A key model feature is the asymmetric complexity effect (Eq. 1 vs. 2).
Figure 3 shows that the gap between direct and CoT modes widens
as task complexity increases, because complexity has a (1 + ¢)-
amplified effect on direct mode but only an additive effect on CoT
mode.

5.5 Diminishing Returns with Reasoning Depth

Figure 4 demonstrates that the logarithmic token-reduction model
(Eq. 2) naturally produces diminishing marginal returns: early in-
creases in token budget yield large bias reductions, but the benefit
saturates at higher budgets.
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Figure 2: Simulated speed-accuracy tradeoff across reasoning
modes.
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Figure 3: Simulated bias rates by task complexity. The direct-

CoT gap widens with complexity due to the asymmetric com-
plexity amplification factor ¢ = 0.15.

Token Reduction (Sit

Bias Reduction with Token Budget Diminishing Returns in Bias Reduction

0.500

0475 0.00025

e
4

0.00020

2

0.00015

375

imulated Bias Rat

000010

Si
& g
Marginal Reduction per Token

0325 0.00005

0.300

0.00000
o 10 10° AR R
< e

Token Budget Token Budget

Figure 4: Left: simulated bias rate vs. token budget showing
logarithmic saturation. Right: marginal bias reduction per
additional token, demonstrating diminishing returns.

5.6 Sensitivity Analysis

To assess whether qualitative conclusions depend on specific pa-

rameter choices, we vary each of the four key parameters (rédlr),

rémt), a, f) one at a time while holding others at their defaults.
Figure 5 shows the bias-rate gap (direct minus CoT-long) and FTI
as functions of each parameter. The fast-thinking pattern (positive

gap, FTI > 1) persists across the full explored range for all parame-
ters, confirming that the qualitative finding is robust to parameter
perturbation.
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Figure 5: Sensitivity analysis: bias-rate gap and FTI as func-
tions of each model parameter. The fast-thinking pattern
persists across the full explored range.

Additionally, the “complexity amplifies gap” property holds in
the majority of parameter settings (see supplementary results in
the released data).

6 DISCUSSION
6.1 Interpretation

The simulation framework demonstrates that a simple paramet-
ric model with two key asymmetries—higher baseline bias for di-
rect mode and asymmetric complexity amplification—is sufficient
to produce a robust fast-thinking pattern. The logarithmic token-
reduction function provides a principled model of diminishing re-
turns that avoids the linear-reduction artifact of simpler models.

6.2 Testable Predictions

The framework generates specific testable predictions for future
empirical LLM studies:
(1) Direct prompting should yield bias rates 1.7-2.1x higher
than extended CoT across standard cognitive bias tasks.
(2) The direct-CoT gap should widen with task complexity.
(3) Marginal bias reduction from additional reasoning tokens
should decrease with budget, following an approximately
logarithmic curve.
(4) The FTI should vary by bias type, with simpler biases (an-
choring) being more amenable to CoT reduction.

6.3 Limitations

This is a simulation, not an empirical study. The reported bias
rates, p-values, and effect sizes reflect properties of the mathemat-
ical model, not measurements of real LLM behavior. The model
hard-codes the qualitative pattern (direct > CoT by construction), so



the simulation cannot discover whether LLMs exhibit fast-thinking
bias—it can only formalize the hypothesis and explore its implica-
tions.

Parameter justification. Default parameters are chosen for
plausibility, not calibrated to any specific LLM or dataset. Future
work should calibrate parameters against empirical measurements.

Additive bias model. The model assumes bias-type difficulty
and complexity offsets combine additively. Real cognitive biases
may interact in more complex ways.

No task-level heterogeneity. Within a condition, all problems
share the same expected bias rate. Real tasks would exhibit item-
level difficulty variation.

Statistical significance. Because the model specifies separated
distributions, statistical significance is guaranteed with enough
trials. The sensitivity analysis and effect-size reporting are more
informative than p-values in this context.

7 CONCLUSION

We present a simulation framework that formalizes the hypothe-
sis that LLMs may exhibit fast-thinking bias analogous to Kahne-
man’s System 1/System 2 distinction. The mathematical model—
with asymmetric complexity amplification and saturating token
reduction—produces robust dual-process-like patterns across a wide
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parameter range. The framework generates four specific testable
predictions for future empirical validation. All code and synthetic
data are released to facilitate replication, extension, and calibration
against real LLM experiments.
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