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ABSTRACT

We investigate whether empirical findings on learning rate (LR)
configuration for Mixture-of-Experts (MoE) Transformers gener-
alize to dense Transformer architectures through a controlled
simulation study. Using a synthetic loss model with indepen-
dently parameterized architectures, we examine the fitted scaling
law 7*(N,D) = ¢ - N* - DP and the relative performance of the
Fitting paradigm versus a sqrt-width scaling heuristic (inspired
by pTransfer) across model sizes (125M~-13B parameters) and data
sizes (10B-500B tokens). Our simulation results show that indepen-
dently fitted scaling law exponents are similar across architectures
(MoE: & = —0.085, f = —0.066; Dense: a = —0.074, f = —0.017),
while the constant ¢ differs. The Fitting paradigm achieves near-
optimal simulated loss for both MoE (5.206) and dense (5.385) archi-
tectures, outperforming the sqrt-width heuristic (5.576 and 5.772,
respectively). A sensitivity analysis over the dense LR offset (0-30%)
quantifies how loss degrades as architectural mismatch grows. We
emphasize that these findings are simulator-derived and outline
requirements for empirical validation with real training runs.

1 INTRODUCTION

Setting the learning rate for large-scale pre-training is critical for
training efficiency [2, 3]. Zhou et al. [6] proposed two paradigms—
Fitting and Transfer (uTransfer [5])—for determining optimal learn-
ing rates under the Warmup-Stable-Decay (WSD) schedule. How-
ever, their experiments exclusively used MoE architectures [1],
leaving generalizability to dense Transformers as an open question.

We address this question through a controlled simulation study.
Unlike the original work, we do not conduct real pre-training runs.
Instead, we construct a synthetic loss model with independently
specified parameters for MoE and dense architectures, then study
whether the scaling law structure transfers. This approach allows
systematic exploration of the parameter space while making all
assumptions explicit and testable.

Contributions: (1) A transparent simulation framework for
studying LR scaling law transfer between architectures, with in-
dependently fitted exponents; (2) A realistic grid-search baseline
(LR sweep, not oracle); (3) A fitting paradigm with estimation noise
from pilot runs; (4) Sensitivity analysis over the dense LR offset;
(5) Clear delineation of simulation assumptions and a roadmap for
empirical validation.

2 SIMULATION MODEL

We explicitly define all components of our synthetic simulation,
following best practices for reproducible computational experi-
ments [4].

2.1 Base Loss Function

The simulated final loss for architecture a € {moe, dense} is:
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where N is model size (in billions), D is data size (in billions of
tokens), 7 is the learning rate, 17}, is the ground-truth optimal LR,
k = 0.5 is the LR mismatch penalty coefficient, and ¢ ~ N(0, o)
with ¢ = 0.005.

The architecture-specific parameters (Table 1) are set indepen-
dently—dense parameters are not derived from MoE parameters,
addressing a key limitation of the original study design where
shared exponents made the “transfer” conclusion tautological.

Table 1: Simulation model parameters. Dense and MoE pa-
rameters are specified independently.

Architecture A Y 1 ¢ (LR law)
MoE 6.00 —-0.076 —0.028 0.00320
Dense 6.12 —0.070 —0.025 0.00368

2.2 Optimal LR Scaling Law

The ground-truth optimal LR follows a power law:
ny(N,D) = cq - N% - DPa @)

with MoE exponents amoe = —0.078, fimoe = —0.032 and dense
exponents Qgense = —0.072, fdense = —0.029. The exponents differ
between architectures, but are similar in magnitude—whether this
similarity holds empirically is the open question motivating this
study.

2.3 LR Paradigms
We compare three approaches:

o Fitting paradigm: Fit {c, ¢, f} from 8 noisy pilot runs per
architecture. Pilot LR measurements include multiplicative
Gaussian noise (opilor = 0.01), introducing realistic estima-
tion error.

e Sqrt-width heuristic (inspired by pTransfer [5]): n =
Nbase VNbase /N With fpase = 1073, Npase = 125M. This
is a simplified approximation of the full yTransfer protocol,
which involves parameterization-specific rules. We use this
name to avoid overstating fidelity to the original method.

e Grid search: Logarithmic sweep over 30 LR values in
[1073,5 x 1072]. Unlike an oracle that uses the true op-
timal LR directly, this introduces quantization noise from
the discrete grid.



Each configuration is evaluated over 10 independent trials with
different noise realizations. All experiments use seed 42 for repro-
ducibility.

3 RESULTS

3.1 Scaling Law Transfer

Table 2 shows scaling law parameters fitted independently from
grid-search-discovered LRs (not the oracle ground truth). The fitted
exponents show approximate but imperfect agreement: « differs
by 14% and S by 74% between architectures. The constant c fitted
from grid search is MoE: 0.00364 vs. Dense: 0.00342.

Table 2: Scaling law parameters fitted from grid-search LRs.
Ground truth shown for comparison. Discrepancies arise
from grid quantization noise.

Anon.

3.3 LR Prediction Error

Figure 2 shows LR prediction error across model sizes. The Fitting
paradigm achieves low error (< 1%) for both architectures, while the
sqrt-width heuristic shows ~86-88% error due to its architecture-
agnostic single-parameter scaling.
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The disagreement between fitted and ground-truth values il-
lustrates a key point: even in a controlled simulation, finite grid
resolution and noise produce imperfect recovery of the true param-
eters.

3.2 Loss Comparison

Figure 1 compares simulated final loss across paradigms and ar-
chitectures. Error bars show mean within-trial standard deviation
(run-to-run variability), not cross-scale variation, correcting a sta-
tistical reporting issue in the original analysis.
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Figure 1: Mean simulated loss by paradigm and architec-
ture. Error bars represent mean within-trial standard devi-
ation (run-to-run variability, ~ 0.005), not variation across
model/data size configurations.

The Fitting paradigm achieves near-optimal loss for both MoE
(5.206 + 0.004) and dense (5.385 =+ 0.005), closely matching grid
search (MoE: 5.211, dense: 5.387). The sqrt-width heuristic lags
substantially (MoE: 5.576, dense: 5.772), reflecting its poor LR ap-
proximation at larger scales.

Figure 2: Learning rate prediction error vs. model size. The
sqrt-width heuristic’s error grows with model size due to its

V1/N assumption.

3.4 Scaling Law Visualization

Figure 3 compares grid-search-found optimal LRs across model
sizes for both architectures, with independently fitted scaling laws
overlaid. The approximate parallelism in log-space supports the
hypothesis that similar (but not identical) power-law structure
governs both architectures.
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Figure 3: Optimal LR (from grid search) vs. model size for
MoE and dense architectures. Dashed lines show indepen-
dently fitted scaling laws.

3.5 Independently Fitted Exponents

Figure 4 directly compares the fitted exponents « and f across ar-
chitectures. While both are negative (indicating decreasing optimal
LR with increasing scale), the magnitudes differ—particularly for
B, suggesting that data-size dependence may be more architecture-
specific than model-size dependence.
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Figure 4: Independently fitted scaling law exponents. Dif-
ferences in f suggest data-size dependence may be more
architecture-sensitive.

3.6 Sensitivity Analysis

Figure 5 shows how performance degrades as the dense LR constant
offset increases from 0% to 30% relative to MoE. When the MoE-
derived Fitting law is applied to dense models without recalibration,
loss increases monotonically with offset, while grid search (which
adapts to each configuration) maintains stable performance. The
crossover point where fitting loss exceeds grid search loss occurs
at approximately 10% offset.
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Figure 5: Sensitivity analysis: effect of dense LR constant
offset. Left: loss comparison between fitting (without recali-
bration) and grid search. Right: mean LR error grows linearly
with offset.

4 DISCUSSION
4.1 What This Simulation Shows

Under the assumptions of our synthetic model, the Fitting para-
digm transfers well between architectures when the scaling law
exponents are similar. The key operational takeaway is that practi-
tioners can use MoE-derived exponents as starting points but must
recalibrate the constant ¢ for dense models—and the sensitivity
analysis quantifies how much performance is lost if they do not.

4.2 What This Simulation Cannot Show

We emphasize several fundamental limitations:

(1) Simulation, not empirical evidence. All results are gen-
erated by a synthetic loss model. The “transfer” of scaling
law structure is a property of our simulator design, not an
empirical observation from real pre-training.

(2) Loss model fidelity. Real pre-training loss landscapes are
far more complex than our quadratic LR penalty model. The
true penalty shape, interaction effects, and non-stationarity
are not captured.

(3) Simplified yTransfer. Our sqrt-width heuristic captures
only the dominant scaling behavior of yTransfer, not the
full parameterization-dependent protocol [5].

(4) Exponent similarity is an assumption. We chose similar
(but not identical) exponents for MoE and dense architec-
tures. Whether real training produces similar exponents is
the core open question.

4.3 Roadmap for Empirical Validation

To definitively answer the open problem, the following steps are
needed:

e Run dense Transformer pre-training sweeps under the WSD
schedule at 3+ model scales

o Fit the scaling law p* (N, D) = ¢ - N - Df with uncertainty
intervals

e Compare dense {a, §, c} with MoE values from [6]

e Evaluate Fitting vs. full yTransfer (not the simplified heuris-
tic) using the original protocol

e Report computational cost (FLOPs) for each paradigm, en-
abling cost-benefit analysis

5 CONCLUSION

We present a controlled simulation study investigating whether
MoE-derived LR scaling laws generalize to dense Transformers. Our
simulator, with independently parameterized architectures, shows
that when the underlying exponents are similar, the Fitting para-
digm transfers effectively with only constant recalibration needed.
The sqrt-width heuristic performs poorly across all configurations.
A sensitivity analysis demonstrates graceful degradation: even with
15% constant offset, the Fitting paradigm’s loss increases by only
0.01 (0.2%). These simulation results motivate targeted empirical
validation with real pre-training runs.
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