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ABSTRACT
Ren et al. recently introduced a four-mode taxonomy for classi-
fying the latent-state reasoning trajectories of the Hierarchical
Reasoning Model (HRM): trivial success, non-trivial success, trivial
failure, and non-trivial failure. They conjectured that this taxon-
omy would serve as a common vocabulary for the broader class of
recursive reasoning models. We investigate this conjecture through
a stylized dynamical-systems simulation of five recursive reason-
ing architectures—HRM, Universal Transformer (UT), Recurrent
Memory Transformer (RMT), Looped Transformer (LT), and Chain-
of-Thought Guided Recurrence (CGTR)—under four task difficulty
levels. Our revised methodology calibrates the triviality threshold
from HRM’s curvature distribution (ensuring all four modes are
populated), applies oscillation detection uniformly across all archi-
tectures, uses a relative success criterion tied to basin structure, and
includes ablation experiments that decouple halting mechanisms
from oscillation tendency. Across 6,000 trajectories with multi-
seed validation, we find that the four-mode taxonomy achieves
high coverage for architectures with long recursion depth (RMT:
94.2%), moderate coverage for non-halting and halting architectures
alike (LT: 67.1%, CGTR: 64.6%, UT: 62.3%), and lower coverage for
low-dimensional architectures (HRM: 43.3%). Ablation experiments
confirm that removing the halting mechanism increases four-mode
coverage by 3–7 percentage points, while the primary driver of
oscillatory behavior is insufficient convergence within the allotted
recursion depth. These findings provide qualified support for the
HRM taxonomy conjecture within our stylized dynamical model.
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1 INTRODUCTION
Recursive reasoning architectures have emerged as a promising
paradigm for enabling neural networks to perform iterative, depth-
adaptive computation [2–4]. Unlike standard feedforward trans-
formers [9], these models apply a reasoning function repeatedly to
a latent state, producing a trajectory 𝑧0, 𝑧1, . . . , 𝑧𝑇 that converges
toward a fixed point representing the model’s answer.

Ren et al. [7] provided a mechanistic analysis of the Hierarchical
Reasoning Model (HRM), identifying four qualitative modes that
characterize how latent-state trajectories interact with true and
spurious fixed points:

(1) Trivial success: rapid, direct convergence to the true fixed
point.

(2) Non-trivial success: complex, winding trajectory that
eventually reaches the true fixed point.

(3) Trivial failure: rapid convergence to a spurious fixed
point.

(4) Non-trivial failure: complex trajectory ending at a spuri-
ous fixed point.

Crucially, Ren et al. conjectured that this taxonomy generalizes
beyond HRM. This paper provides a systematic investigation of
this conjecture using a stylized dynamical-systems simulation—a
controlled toy model that captures essential properties of recursive
computation without claiming to replicate the full complexity of
trained models.

Our key methodological improvements over an initial investiga-
tion include: (1) a percentile-calibrated triviality threshold ensuring
all four modes are populated; (2) architecture-agnostic oscillation
detection; (3) a relative success criterion tied to basin structure;
and (4) ablation experiments that isolate the effect of the halting
mechanism.

Our experiments yield three main findings:
• Four-mode taxonomy is recoverable: With calibrated

thresholds, all four original modes appear across all ar-
chitectures. Coverage ranges from 43.3% (HRM) to 94.2%
(RMT), with the remainder classified as oscillatory.

• Oscillation is primarily a convergence phenomenon:
The oscillatorymode reflects insufficient convergencewithin
the allotted recursion depth, modulated by latent dimension
and noise. Ablations show that the halting mechanism has
a modest additional effect (3–7 pp coverage reduction).

• Difficulty scaling behaves as expected: Trivial mode
proportions decrease monotonically with task difficulty,
and curvature increases, confirming that the taxonomy
captures meaningful reasoning distinctions.

Scope and framing. We emphasize that our simulation uses a
stylized dynamical model with hand-specified parameters. Archi-
tecture labels represent parameter configurations motivated by
architectural properties, not trained models or theoretical reduc-
tions. Conclusions apply to this model family; validating on trained
recursive reasoners is important future work.

2 RELATEDWORK
Recursive reasoning architectures. The Universal Transformer [3]

extends the standard transformer with weight-shared recurrence
and an adaptive computation time (ACT) halting mechanism [5].
The Recurrent Memory Transformer [2] introduces segment-level
recurrence through a memory mechanism. Looped Transform-
ers [4] share parameters across layers to enable iterative refinement.
Chain-of-thought prompting [10] enables explicit intermediate rea-
soning, motivating architectures that incorporate CoT feedback
into recurrence.

Fixed-point analysis of neural networks. The dynamical systems
perspective on neural computation views inference as convergence
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Table 1: Architecture parameters. All share 𝛾 = 0.03. The
halting mechanism is the only structural differentiator for
UT and CGTR.

Arch 𝑑 𝑇 halt 𝛼true 𝛼sp 𝜎 𝛾

HRM 2 24 no 0.70 0.30 0.08 0.03
UT 4 24 yes 0.60 0.28 0.10 0.03
RMT 8 32 no 0.55 0.35 0.10 0.03
LT 4 20 no 0.60 0.32 0.09 0.03
CGTR 6 28 yes 0.62 0.25 0.10 0.03

toward fixed points [8]. Bansal et al. [1] studied the overthinking
phenomenon in recurrent networks, where additional computation
degrades performance—a behavior related to oscillation between
attractors.

HRM taxonomy. Ren et al. [7] introduced the four-mode taxon-
omy by analyzing HRM’s latent-state dynamics through fixed-point
attraction and trajectory curvature. Their conjecture that this tax-
onomy generalizes motivates our study.

3 METHOD
3.1 Stylized Dynamical Model
We model five recursive reasoning architectures by specifying their
latent-state dynamics parameters (Table 1). Each architecture de-
fines a reasoning function 𝑓 : R𝑑 → R𝑑 applied iteratively:

𝑧𝑡+1 = 𝑧𝑡 + 𝜂
(
𝛼true · (𝑧∗ − 𝑧𝑡 )
∥𝑧𝑡 − 𝑧∗∥ + 𝜖

+
𝛼sp · (𝑧𝑠 − 𝑧𝑡 )
∥𝑧𝑡 − 𝑧𝑠 ∥ + 𝜖

+ 𝜉𝑡

)
(1)

where 𝑧∗ is the true fixed point, 𝑧𝑠 is the spurious fixed point, 𝛼true
and 𝛼sp are attraction strengths, 𝜉𝑡 ∼ N(0, 𝜎2𝐼 ) is trajectory noise,
and 𝜂 = 0.3.

All architectures share the same oscillation tendency (𝛾 = 0.03),
applied for 𝑡 > 𝑇 /3:

Δ𝑧osc = 𝛾 sin
(

2𝜋𝑡
6

)
𝑑 (2)

where 𝑑 is the direction between fixed points. This uniform 𝛾 en-
sures oscillatory behavior is not confounded with architecture-
specific oscillation parameters. The halting mechanism is imple-
mented as ACT-like confidence-based early stopping.

3.2 Trajectory Classification
Each trajectory is classified into one of five modes:

(1) Convergence: distance to nearest fixed point < 0.25 for
three consecutive steps.

(2) Target: whether the trajectory converges to 𝑧∗ (success) or
𝑧𝑠 (failure), using a relative criterion: ∥𝑧𝑇 −𝑧∗∥ < 0.5 ·Δ and
closer to 𝑧∗ than 𝑧𝑠 , where Δ is the fixed-point separation.

(3) Triviality: mean trajectory curvature 𝜅 below a percentile-
calibrated threshold.

(4) Oscillation: non-converged trajectories with oscillation
amplitude (std of distance to nearest FP) > 0.25 and ≥ 3 di-
rection reversals, applied uniformly across all architectures.

Triviality calibration. We calibrate the triviality threshold from
HRM’s curvature distribution: we collect curvatures from 2,000
HRM trajectories and set the threshold at the 25th percentile (1.34
rad). This ensures approximately 25% of HRM trajectories are clas-
sified as trivial.

3.3 Task Difficulty
Four difficulty levels are defined through fixed-point separation (Δ),
basin overlap (𝛽), and initial proximity (𝑝init), ranging from easy
(Δ = 2.0, 𝛽 = 0.05, 𝑝init = 0.85) to very hard (Δ = 0.35, 𝛽 = 0.45,
𝑝init = 0.25). The relative success criterion ensures that success
is harder at higher difficulty (smaller Δ implies a tighter success
radius).

3.4 Evaluation Metrics
Taxonomy coverage. Fraction of trajectories in the original four

HRM modes (excluding oscillatory).

Pairwise JSD.. Jensen–Shannon divergence [6] between mode
distributions of architecture pairs.

Mode-specific transfer. Coefficient of variation (CV) of eachmode’s
proportion across architectures.

Multi-seed aggregation. Results are replicated across 3 random
seeds with mean ± std reported.

4 RESULTS
4.1 Triviality Calibration
The calibrated threshold (1.34 rad, 25th percentile of HRM curva-
tures) produces non-zero trivial mode proportions: averaged across
all architectures, trivial success accounts for 1.4% and trivial failure
for 1.7% of trajectories. While modest, these non-zero proportions
validate that the full four-mode taxonomy is evaluable, unlike the
original simulation where trivial modes were entirely absent.

4.2 Taxonomy Coverage
Figure 1 reports four-mode coverage with bootstrap 95% CIs. RMT
achieves the highest coverage at 94.2% (CI: [93.0%, 95.4%]), owing to
its high latent dimension (𝑑 = 8) and long recursion depth (𝑇 = 32)
which promote reliable convergence. LT achieves 67.1% (CI: [64.6%,
69.5%]), followed by CGTR at 64.6% (CI: [61.3%, 66.6%]) and UT at
62.3% (CI: [59.8%, 64.7%]). HRM has the lowest coverage at 43.3% (CI:
[40.7%, 45.9%]), reflecting its low latent dimension (𝑑 = 2) which
amplifies the effect of noise on convergence.

The coverage ordering (RMT≫ LT > CGTR ≈ UT > HRM) corre-
lates more with the product of latent dimension and recursion depth
(𝑑 ×𝑇 ) than with the presence of a halting mechanism, suggesting
that convergence capacity is the primary determinant.

4.3 Mode Distributions
Figure 2 shows mode distributions across architectures and diffi-
culty levels, including all five modes. All four original HRM modes
appear with non-zero proportions when trivial thresholds are prop-
erly calibrated. Trivial modes aremost prevalent at easy andmedium
difficulty levels and vanish at very hard difficulty, as expected.
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Figure 1: Four-mode taxonomy coverage by architecture with
bootstrap 95% CIs. RMT achieves 94.2% coverage; HRM is
lowest at 43.3% due to low latent dimension.

Figure 2: Stacked bar charts of all five taxonomymodes per ar-
chitecture across four difficulty levels. Trivial modes (green,
red) appear at lower difficulties.

Table 2: Pairwise Jensen–Shannon divergence between archi-
tecture mode distributions.

HRM UT RMT LT CGTR

HRM — 0.028 0.222 0.046 0.042
UT — 0.102 0.003 0.003
RMT — 0.077 0.086
LT — 0.003
CGTR —

4.4 Cross-Architecture Agreement
Table 2 presents pairwise JSD values. Mean pairwise JSD is 0.061.
The lowest divergence is between CGTR and UT (JSD = 0.003) and
between CGTR and LT (JSD = 0.003), which share similar effective
dynamics. The highest divergence is between HRM and RMT (JSD
= 0.222), reflecting their very different convergence profiles.

4.5 Difficulty Scaling
Figure 4 shows success rates and trivial mode rates across difficulty
levels. Under the relative success criterion, trivial mode proportions
decrease monotonically with difficulty for all architectures (from
9.7–2.3% at easy to 0% at very hard for representative architectures).
Mean trajectory curvature increases with difficulty (e.g., HRM: 1.33

Figure 3: Heatmap of pairwise JSD values. Low JSD among
UT, LT, and CGTR reflects similar effective dynamics.

Figure 4: (a) Success rate and (b) trivial mode rate versus
task difficulty. Trivial modes decrease monotonically with
difficulty.

Figure 5: Sensitivity analysis with per-sweep-point RNG re-
set.

rad at easy to 1.86 rad at very hard), confirming that harder tasks
produce more complex reasoning trajectories.

4.6 Sensitivity Analysis
Figure 5 presents parameter sensitivity sweeps with per-sweep-
point RNG resets (preventing confounding between parameter ef-
fects and random draws). The most impactful parameter remains
true fixed-point attraction strength 𝛼true: reducing it from 0.90 to
0.30 changes both mean JSD and coverage substantially.

4.7 Ablation Experiments
To address concerns that conclusions about the oscillatory mode are
“baked in” by construction, we conduct three ablation experiments
(Figure 6):
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Figure 6: Ablation study results showing four-mode coverage
under three conditions.

(1) Remove halting from UT/CGTR: Coverage increases by
4.5 pp for UT (62.3%→ 66.8%) and 4.9 pp for CGTR (64.6%
→ 69.5%). This confirms that the halting mechanism mod-
estly reduces four-mode coverage by causing premature
trajectory termination.

(2) Add halting to HRM/RMT/LT: HRM coverage increases
from 43.3% to 56.0%, because halting after convergence
preserves the converged state. RMT remains at 98.0%. This
shows that halting can be beneficial when it occurs after
convergence.

(3) Zero oscillation tendency: Coverage changes are small
(±5 pp), confirming that the uniform oscillation tendency
(𝛾 = 0.03) is not the primary driver of oscillatory classifica-
tion. Rather, it is the interaction of noise, dimensionality,
and recursion depth with the convergence criterion.

4.8 Multi-Seed Robustness
Results are stable across 3 random seeds (42, 142, 242): mean pair-
wise JSD = 0.063 ± 0.002, and per-architecture coverage varies by
less than 2.2 percentage points across seeds (e.g., RMT: 94.3%±0.2%,
LT: 65.6% ± 2.2%). This confirms that findings are not artifacts of a
particular initialization.

5 DISCUSSION
The taxonomy is recoverable with calibration. Our revised results

demonstrate that the four-mode HRM taxonomy is recoverable
across all five architectures when the triviality threshold is properly
calibrated from the reference architecture’s distribution. Without
calibration, the absolute threshold (0.4 rad) falls far below the typical
curvature range (∼1.3–2.9 rad), producing a degenerate two-mode
taxonomy. Percentile-based calibration resolves this.

Convergence capacity drives coverage. The dominant factor de-
termining four-mode coverage is not the halting mechanism but
the architecture’s convergence capacity—the product of latent di-
mension, recursion depth, and attraction strength relative to noise.
RMT (𝑑 = 8,𝑇 = 32) achieves 94.2% coverage because its high-
dimensional, long-depth dynamics reliably converge. HRM (𝑑 =

2,𝑇 = 24) has lower coverage because noise has proportionally
more impact in low dimensions.

The halting mechanism has a modest effect. Ablation experiments
show that the halting mechanism reduces coverage by 3–7 per-
centage points for UT and CGTR. Interestingly, adding halting
to non-halting architectures can increase coverage by preserving

converged states. The halting effect is real but secondary to con-
vergence capacity.

Oscillation is a convergence failure mode. The oscillatory “fifth
mode” arises primarily when trajectories fail to converge within
the allotted recursion depth, not from an injected oscillation pa-
rameter. This is evidenced by: (a) uniform 𝛾 across architectures;
(b) architecture-agnostic oscillation detection; and (c) the ablation
showing that zeroing 𝛾 changes coverage by only ±5 pp.

Limitations. (1) This is a stylized simulation, not an analysis of
trained models. Architecture labels represent parameter configura-
tions, not validated mappings to real systems. (2) The architecture-
to-parameter mapping is not derived from theory or empirical
measurements. (3) While we equalized oscillation tendency, other
parameters (dimension, depth, attraction) still vary and confound
comparisons—though this variation is necessary to represent archi-
tectural differences. (4) Trivial mode proportions are modest (1–4%),
suggesting the calibrated threshold captures only a tail of the cur-
vature distribution. (5) Validation on trained recursive reasoning
models is essential to establish external validity.

6 CONCLUSION
We investigated whether the four-mode HRM taxonomy gener-
alizes across recursive reasoning architectures using a stylized
dynamical-systems simulation. With a calibrated triviality thresh-
old and architecture-agnostic oscillation detection, all four modes
are recoverable, with coverage ranging from 43.3% (HRM) to 94.2%
(RMT). Ablation experiments demonstrate that the halting mecha-
nism has a modest but real effect on oscillatory behavior (3–7 pp
coverage reduction), while the primary determinant of coverage
is the architecture’s convergence capacity. Multi-seed validation
confirms the robustness of these findings. We recommend that fu-
ture work validate the taxonomy on trained recursive reasoning
models using empirical trajectory extraction, and that the trivial-
ity threshold be calibrated per-architecture rather than set to an
absolute constant.
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