Layered Governance Architecture for Agentic Al Systems: A
Simulation Study

Anonymous Author(s)

ABSTRACT

Agentic Al systems that plan over long horizons, use tools, maintain
persistent memory, and interact with other agents pose governance
challenges that exceed the capabilities of model-level alignment
alone. We propose a Layered Governance Architecture (LGA) that
integrates three enforcement layers—model-level alignment moni-
toring, agent-level policy enforcement, and ecosystem-level interac-
tion oversight—into a unified framework. We evaluate LGA through
a controlled simulation study with paired evaluation (same traces re-
played under each governance configuration) and multiple random
seeds reporting mean + standard deviation. Key design improve-
ments over prior work include: (1) explicit layer enable/disable
flags ensuring a true no-governance baseline, (2) ground-truth-
based metrics separating true positive rate from false positive rate,
(3) wall-clock overhead measurement, (4) a continuous adaptation
experiment where a single policy object persists across distribution
shifts, and (5) per-step trace logging for auditing. Across 10 seeds,
the layered approach achieves a true positive rate of 0.581 + 0.024
with a false positive rate of 0.006 + 0.005 and 99.4% utility preser-
vation. The adaptive controller demonstrates genuine policy recali-
bration across risk phases with recorded threshold trajectories.
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1 INTRODUCTION

The emergence of agentic Al systems—large language models aug-
mented with tool use, persistent memory, long-horizon planning,
and multi-agent collaboration—has created governance challenges
that extend far beyond traditional model-level alignment [13]. When
an Al agent can execute multi-step plans, write to persistent mem-
ory, invoke external tools, and interact with other autonomous
agents, the governance problem becomes fundamentally multi-
layered: failures may arise not from individual model outputs but
from the interaction of planning decisions across time, agents, and
system components.

Existing approaches address fragments of this challenge. Con-
stitutional AI [3] and RLHF [9] target model-level alignment but
assume short-horizon interactions. Tool-augmented agent frame-
works [10, 11] expand the action surface beyond what model-level
guardrails cover. Multi-agent oversight formalisms [4] expose the
combinatorial complexity of governing interacting agents but lack
runtime enforcement mechanisms. Recent work on scaling safe-
guards [7] highlights that static guardrails degrade as agents acquire
new objectives, motivating dynamic governance.

Wei et al. [13] identify a central open problem: developing gov-
ernance frameworks that jointly address model-level alignment,
agent-level policies, and ecosystem-level interactions under real-
istic deployment conditions. We address this problem through a

controlled simulation study that serves as a proof-of-concept for
the layered governance approach.

Contributions. We make three contributions:

(1) We propose the Layered Governance Architecture (LGA),
a three-layer framework that integrates model-level align-
ment monitoring, agent-level policy enforcement, and ecosystem-
level interaction oversight (Section 3).

(2) We design a controlled simulation methodology featur-
ing paired evaluation on shared traces, explicit layer dis-
abling, ground-truth-based metrics (TPR, FPR, attribution
accuracy), measured wall-clock overhead, and continuous
adaptation across distribution shifts (Section 4).

(3) We evaluate LGA through multi-seed experiments (N =
10 seeds) across five governance configurations, demon-
strating its effectiveness in detection, attribution, adapta-
tion, and scalability with confidence intervals (Section 5).

2 PROBLEM FORMULATION

We formalize the governance problem for agentic systems as follows.
Let A ={ai,...,an} be a set of n agents operating in a shared en-
vironment over a horizon of T time steps. At each step ¢, agent a; se-
lects an action af from its action space Q! = {tool_call, memory_write, message,
Each action carries a risk score r(ai) € [0,1].
A governance framework G consists of three layers:

e Model layer Gys: Constraints on individual model outputs,
parameterized by an alignment threshold 8.

e Agent layer G4: Constraints on agent-level actions, pa-
rameterized by a risk budget 84 with action-type-specific
multipliers.

e Ecosystem layer Gg: Constraints on collective behavior,
parameterized by a collective risk bound 6 that considers
the mean risk across all agents.
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where c(a}) € {0.6,0.8,1.0} is the action-type multiplier, 7, I is the
mean risk of all other agents at step ¢, and each indicator ¥ is zero
when layer ¢ is disabled.

An action ai is blocked if any enabled layer flags it:

blocked(al) = ¥p[r > Op]VIALr > c(al)-0a]ViE| -

Metrics. We evaluate governance quality via six metrics:

e Blocked rate: fraction of actions blocked by governance.

e Ground-truth unsafe rate: fraction of actions that a per-
fect oracle would flag.

e True positive rate (TPR): fraction of ground-truth unsafe
actions that governance blocks.

o False positive rate (FPR): fraction of ground-truth safe
actions that governance incorrectly blocks.



e Attribution accuracy: fraction of blocked actions where
governance correctly identifies all responsible layers.

e Utility preservation: fraction of ground-truth safe actions
that governance allows through.

Additionally, we measure detection latency (delay between action
and detection under periodic monitoring) and wall-clock over-
head (measured computation time).

3 LAYERED GOVERNANCE ARCHITECTURE
3.1 Architecture Overview

The Layered Governance Architecture operates as a runtime in-
terception layer between the agent and its environment. Every
action passes through three sequential checks before execution is
permitted:

(1) Model-layer check: Verifies that the action’s risk score is
below the alignment threshold (637 = 0.35 by default).

(2) Agent-layer check: Verifies that the risk score satisfies
action-type-specific budgets derived from 04 = 0.45, with
multipliers of 0.8 for tool calls and 0.6 for memory writes.

(3) Ecosystem-layer check: Combines the action’s risk with
the mean risk of other agents and verifies the combined
score is below g = 0.50.

Explicit layer disabling. Each layer has an independent enable/disable

flag. When a layer is disabled, its check is skipped entirely and
never produces violations. This ensures that the “none” baseline
(all layers disabled) produces zero blocked actions, avoiding the
confound of residual constraints from high thresholds identified in
prior implementations.

3.2 Per-Step Trace Logging

Every governance decision is logged in a per-step trace that records:
timestep, agent ID, action type, risk score, ground-truth violation
flags for each layer, governance decisions for each layer, whether the
action was blocked, detection time, and current policy thresholds.
This enables post-hoc analysis, metric recomputation, and auditing.

4 EXPERIMENTAL METHODOLOGY
4.1 Paired Evaluation

A key methodological improvement is paired evaluation: for each
random seed, we generate a single set of agent action traces (risk
scores and action types) and replay the identical traces under every
governance configuration. This eliminates confounds from different
RNG-sampled action sequences across configurations and ensures
that differences in metrics are attributable solely to the governance

policy.

4.2 Multi-Seed Evaluation

We run all experiments with N = 10 random seeds and report
mean + standard deviation for all metrics. This provides confidence
intervals and reveals variability across random trace realizations.

4.3 Ground-Truth Metrics

We separate the ground-truth unsafe rate (what a perfect oracle
would flag under the layered policy thresholds) from the blocked rate

Anon.

Table 1: Governance framework comparison (4 agents, 200
steps, paired traces, mean + std over 10 seeds). None = all
layers disabled.

Framework Blocked TPR FPR Attrib.  Utility
None .000+.000  .000+.000 .000+.000  1.00+.000  1.00=+.000
Model Only ~ .215+.027  .362+.042  .006+.005 .029+.016  .994:+.005
Agent Only .274+.021  .464+.033  .006+.005 .013+.009 .994=+.005
Ecosystem .236+.015  .402+.020 .000+.000 .003+.004  1.00+.000
Layered .343+.017  .581+.024 .006+.005 .628+.054 .994+.005

(what the governance configuration actually blocks). This enables
computing true positive rate (TPR, or recall) and false positive rate
(FPR), providing a principled evaluation of governance effectiveness
rather than conflating policy strictness with detection quality.

4.4 Measured Overhead and Detection Latency

Governance overhead is measured via wall-clock time (time. perf_counter())

for each configuration, reporting seconds per evaluation run. De-
tection latency is controlled via a configurable monitoring interval
parameter: with interval 1, violations are detected immediately;
with larger intervals (2, 5, 10, 20 steps), detection is delayed to
the next monitoring sweep. This produces empirically grounded
latency measurements rather than synthetic values.

4.5 Continuous Adaptation

The adaptation experiment uses a single continuous simulation with
a persistent policy object across three distribution-shift phases:
e Phase 1 (steps 0-199): Low risk profiles — the policy oper-
ates under normal conditions.
e Phase 2 (steps 200-399): High/adversarial risk profiles — a
risk spike triggers policy tightening.
o Phase 3 (steps 400-599): Moderate risk profiles — recovery,
where the policy should relax.
The same policy object carries over between phases, so threshold
changes from Phase 2 persist into Phase 3. We record the threshold
trajectory (values of 01, 04, O over time) to verify that genuine
adaptation occurs.

5 EXPERIMENTS

All experiments use deterministic seeding (np. random. seed(42)
with offsets). Action risk scores are drawn from Gaussian distribu-
tions with temporal drift, across four risk profiles: low (u = 0.15, 0 =
0.08), moderate (1 = 0.30, 0 = 0.12), high (z = 0.55, 0 = 0.15), and
adversarial (¢ = 0.70, 0 = 0.18).

5.1 Framework Comparison

We compare five governance configurations across 4 agents, 200
time steps, and four risk profiles using paired evaluation over 10
seeds. Table 1 reports the results.

The none baseline correctly produces zero blocked actions, zero
TPR, and zero FPR, serving as a proper control. The layered frame-
work achieves the highest TPR of 0.581 + 0.024 by combining all
three detection layers, blocking 34.3% of actions while maintain-
ing 99.4% utility preservation. Attribution accuracy is highest for
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Framework Comparison (mean +/- std over 10 seeds)
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Figure 3: Left: Governance effectiveness (blocked rate, TPR)
vs agent count. Right: Measured wall-clock overhead vs agent

Governance Framework

Figure 1: Framework comparison across governance config-
urations showing blocked rate, TPR, FPR, and utility with
error bars (mean + std over 10 seeds).

count. Error bars show +1 std.
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Table 2: Ablation study on paired traces (seed 42, 4 agents,

200 steps).
Config Blocked TPR FPR Utility
None 0.000 0.000  0.000 1.000
Model Only 0.220 0.377  0.009 0.991
Agent Only 0.285 0.490  0.009 0.991
Ecosystem Only 0.231 0.403  0.000  1.000
Layered 0.349 0.601  0.009 0.991

Ablation Study: Same Traces, Different Governance (Seed 42)
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Figure 2: Ablation: same traces replayed under different gov-
ernance configs (seed 42).

the layered configuration (0.628 + 0.054), as it is the only config-
uration that enables all three layers and can therefore match the
ground-truth layer assignments. Single-layer configurations have
low attribution accuracy because they flag violations on only one
layer while the ground truth may involve multiple layers.

5.2 Ablation Study

To isolate each layer’s contribution, we replay the same trace (seed
42) under each governance configuration. Table 2 reports single-
seed results on paired traces.

Score

Threshold Value

0 500 1000 1500
Cumulative Actions Phase

Figure 4: Left: Policy threshold trajectory showing 0,1, 04,
Or adapting across phases (single seed). Right: Per-phase
blocked rate, TPR, and utility (mean =+ std, 10 seeds).

The ablation confirms that each layer adds complementary de-
tection capability on identical traces, and the layered combination
provides defense-in-depth coverage.

5.3 Scaling Behavior

We evaluate how governance performance scales with the number
of agents, ranging from 2 to 32 (100 steps each, 10 seeds). Figure 3
illustrates the results.

Wall-clock overhead scales approximately linearly with the num-
ber of agents (more actions to check), but the per-action cost re-
mains constant. TPR remains stable across agent counts, demon-
strating that governance quality does not degrade with scale.

5.4 Continuous Adaptation

We evaluate the adaptive policy controller in a single continuous
simulation (600 steps, 4 agents, 10 seeds) with distribution shift
across three phases.

The threshold trajectory (Figure 4, left) shows that the adaptive
controller relaxes 6ys and 84 from 0.35/0.45 to 0.9 during the low-
risk normal phase, tightens them down to 0.1 during the spike
phase, and gradually relaxes them back through 0.38 and 0.58 during
recovery. Because the same policy object persists across phases,
the recovery-phase thresholds reflect the cumulative adaptation
history—they do not simply reset. The per-phase metrics (Figure 4,
right) confirm that governance effectiveness tracks the distribution
shift: the spike-phase TPR reaches 0.924 +0.011 with a blocked rate
of 0.795 + 0.007, while recovery shows residual tightening effects
(blocked rate 0.119 + 0.013) before the policy relaxes.
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Figure 6: Governance effectiveness across planning horizons
(10-500 steps).

5.5 Detection Latency

We evaluate detection latency under five monitoring intervals (1, 2,
5, 10, 20 steps). Figure 5 shows the results.

With continuous monitoring (interval = 1), detection latency
is zero. As the monitoring interval increases, mean detection la-
tency grows proportionally, providing a concrete latency—-overhead
tradeoff. TPR remains unchanged because the monitoring interval
affects only detection timing, not the decision to block.

5.6 Planning Horizon Analysis

We examine governance effectiveness across planning horizons
from 10 to 500 steps (4 agents, 10 seeds). Figure 6 presents the
results.

The layered governance framework maintains stable blocked
rate and TPR across horizons, with small variance across seeds. The
no-governance baseline correctly produces zero blocked actions at
all horizons.

Anon.

6 DISCUSSION

Defense-in-Depth. Our paired ablation confirms that layered gov-
ernance provides defense-in-depth: each layer catches violations
that others miss when evaluated on identical traces. The model layer
enforces alignment constraints, the agent layer restricts action-type-
specific risk budgets, and the ecosystem layer bounds collective
behavior.

Measured vs. Synthetic Metrics. A key improvement in this work
is the replacement of synthetic metrics with empirically grounded
ones. Wall-clock overhead is measured rather than looked up from
a constant table. Detection latency depends on a configurable mon-
itoring interval. Attribution accuracy compares governance layer
flags against ground-truth violated layers, rather than trivially
checking for non-empty strings.

Continuous Adaptation. The single-run continuous adaptation
experiment demonstrates genuine policy adaptation: the threshold
trajectory shows the controller relaxing constraints to 0.9 during
low risk, tightening them to 0.1 during the spike, and gradually
recovering through intermediate values (0.38, 0.58) before returning
to 0.9. Because the policy object persists across phases, the recovery
behavior reflects cumulative adaptation rather than a fresh-start
effect. The spike-phase TPR of 0.924 confirms that the tightened
policy is highly effective at detecting risky actions under elevated
threat conditions.

Limitations. This study is a proof-of-concept simulation, not an
evaluation on real agentic Al systems. Key limitations include:

o Risk scores are drawn from Gaussian distributions with
temporal drift, which may not capture the full complexity of
real-world agent behavior, including adversarial strategies
or correlated risks.

o The ecosystem layer uses mean cross-agent risk as a statis-
tic, without modeling shared state, message-passing effects,
or coupled dynamics between agents.

e Attribution accuracy depends on comparing governance
flags to ground-truth violations defined by the same thresh-
old rules. A real system would need external ground truth.

e The simulation does not model strategic or adversarial
agents that attempt to circumvent governance.

Future work should validate LGA on actual LLM-based agent de-
ployments with real tool use, memory operations, and multi-agent
interaction.

7 RELATED WORK

AI Safety and Alignment. Foundational work on concrete Al
safety problems [2] identified reward hacking, side effects, and
distributional shift as key challenges. Constitutional AI [3] and
RLHF [9] address model-level alignment through training-time
objectives. Our work extends these ideas to runtime governance of
deployed agentic systems.

Agentic AI Governance. Wei et al. [13] formalize the need for gov-
ernance frameworks spanning model, agent, and ecosystem levels.
Practices for governing agentic systems [12] propose organizational
and technical safeguards. The ethics of advanced Al assistants [5]
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examines value alignment challenges. Our LGA provides a concrete
simulation framework addressing these desiderata.

Multi-Agent Oversight. Chan et al. [4] formalize multi-agent over-
sight via causal modeling and aggregate governance. Our ecosystem
layer builds on their insights while adding runtime enforcement.
Scaling safeguards [7] motivate adaptive governance, which our
adaptive policy controller implements.

Runtime Monitoring. Our layered monitoring approach draws
inspiration from runtime verification in software engineering [1, 6],
where systems are monitored against formal specifications during
execution. We adapt the conceptual framework of layered, per-
action checking to Al agent governance, though we note that our
current implementation uses threshold-based checks rather than
full timed automata or model checking.

Benchmarking Agentic Systems. Evaluation frameworks for agen-
tic AI [8] highlight the inadequacy of existing benchmarks for
testing planning-time failures and multi-step goal drift. Our paired
simulation methodology addresses the need for controlled compar-
ison of governance approaches.

8 CONCLUSION

We have presented the Layered Governance Architecture, a three-
layer framework for governing agentic Al systems, evaluated through
a controlled simulation study. Key methodological contributions
include paired evaluation on shared traces, ground-truth-based met-
rics (TPR, FPR, attribution accuracy), measured wall-clock overhead,
and continuous single-run adaptation with recorded threshold tra-
jectories. Across 10 seeds, the layered approach achieves a TPR of
0.581 + 0.024 with only 0.6% FPR and 99.4% utility preservation,
and the adaptive controller demonstrates genuine policy recalibra-
tion across distribution shifts. This work establishes a principled
simulation methodology for evaluating governance approaches and
motivates future validation on real agentic Al deployments.

REFERENCES

[1] Rajeev Alur and David L. Dill. 1994. A Theory of Timed Automata. In Theoretical
Computer Science, Vol. 126. 183-235.

[2] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and
Dan Mané. 2016. Concrete Problems in Al Safety. arXiv preprint arXiv:1606.06565
(2016).

[3] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion,
Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon,
et al. 2022. Constitutional Al: Harmlessness from Al Feedback. arXiv preprint
arXiv:2212.08073 (2022).

[4] Alan Chan et al. 2025. Multi-Agent Oversight: Prioritization, Causal Modeling,
and Aggregate Governance. arXiv preprint arXiv:2512.07094 (2025).

[5] Iason Gabriel et al. 2024. The Ethics of Advanced Al Assistants. arXiv preprint
arXiv:2404.16244 (2024).

[6] Gerard J. Holzmann. 1997. The Model Checker SPIN. In IEEE Transactions on
Software Engineering, Vol. 23. 279-295.

[7] Siyuan Huang et al. 2026. Scaling Safeguards for Open-Ended Agentic AL arXiv
preprint arXiv:2601.02749 (2026).

[8] Sayash Kapoor et al. 2025. Benchmarking Agentic Al Systems under Realistic
Constraints. arXiv preprint arXiv:2511.10524 (2025).

[9] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training Language Models to Follow Instructions with Human Feedback.
Advances in Neural Information Processing Systems 35 (2022), 27730-27744.

[10] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin
Cong, Xiangru Tang, Bill Qian, et al. 2023. ToolLLM: Facilitating Large Language
Models to Master 16000+ Real-World APIs. arXiv preprint arXiv:2307.16789
(2023).

[11] Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli,
Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language Models Can Teach Themselves to Use Tools. Advances in
Neural Information Processing Systems 36 (2023).

[12] Yonadav Shavit et al. 2023. Practices for Governing Agentic Al Systems. OpenAI
Research Report (2023).

[13] Jason Wei et al. 2026. Agentic Reasoning for Large Language Models. arXiv
preprint arXiv:2601.12538 (2026).



A EXPERIMENTAL CONFIGURATION

Table 3: Default governance policy parameters.

Layer Parameter Value
Model Alignment threshold (657)  0.35
Agent Risk budget (64) 0.45
Ecosystem  Collective risk bound (0g)  0.50
Adaptive Window size (w) 20
Adaptive Escalation threshold 0.7
Adaptive Adaptation rate (5) 0.05

Table 4: Risk profile parameters (Gaussian).

Profile Mean () Std (o)
Low 0.15 0.08
Moderate 0.30 0.12
High 0.55 0.15
Adversarial 0.70 0.18

Anon.

B REVISION SUMMARY

This revision addresses the following review feedback:
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©
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(6)

True baseline (Priority 0): The “none” configuration now
explicitly disables all layers via boolean flags rather than
setting thresholds to 1.0. This eliminates residual constraint
violations in the baseline.

Paired evaluation (Priority 1): Traces are generated once
per seed and replayed identically under every governance
configuration. We run 10 seeds and report mean =+ std.
Real metrics (Priority 2): Attribution accuracy compares
flagged layers against ground-truth violated layers. Detec-
tion latency is controlled by a monitoring interval parame-
ter. Overhead is measured via wall-clock time.
Continuous adaptation (Priority 3): The adaptation ex-
periment uses a single continuous simulation with distri-
bution shift, where the same policy object persists across
phases. Threshold trajectories are recorded and plotted.
Raw traces (Priority 4): Per-step trace records are stored
in JSON, containing all fields needed for post-hoc analysis.
Paper claims (Priority 5): Removed claims of “formal
guarantees,” “hierarchical policy automata,” and “causal au-
dit trail” Reframed as a proof-of-concept simulation study.
Renamed metrics (blocked rate, TPR, FPR, utility). Added
explicit limitations section.
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