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ABSTRACT
Large language models (LLMs) struggle to simultaneously integrate
physics-based numerical calculations and policy-based symbolic
rules when making autonomous driving decisions—a challenge
termed hybrid reasoning. We propose a decomposed architecture
that separates scenario parsing (handled by the LLM), deterministic
physics computation (using interval arithmetic for rigorous uncer-
tainty propagation), and policy rule evaluation (using a structured
constraint database with soft margins) into dedicated modules,
then fuses their outputs through a priority-weighted constraint
satisfaction algorithm. We evaluate on a synthetic benchmark of
600 driving scenarios spanning 5 weather conditions, 5 road types,
and 3 difficulty levels, classified into four reasoning modes: simple,
physics-only, policy-only, and hybrid. Each scenario includes a tem-
plated natural-language description enabling end-to-end evaluation
of the parsing stage. Three simulated baselines—modeled via para-
metric stochastic error models calibrated to published benchmark
ranges, not actual LLM API calls—provide comparison points, while
our hybrid framework is evaluated deterministically by running the
full reasoning pipeline on each scenario. Our framework achieves
96.0% overall decision accuracy compared to 62.0% for a simulated
monolithic LLM, 62.2% for simulated chain-of-thought prompting,
and 69.0% for a simulated tool-augmented LLM. On the hardest
hybrid-reasoning scenarios, our approach reaches 95.9% accuracy.
Physics computation errors (braking distance MAE) are 0.9m with
our deterministic engine versus 12.2m for the simulated monolithic
baseline. A data-driven failure-mode analysis identifies parsing am-
biguity (45.8% of errors) and confidence calibration (50.0%) as the
primary remaining error sources. These results demonstrate that
architectural decomposition, rather than monolithic scaling, is a
promising path toward reliable hybrid reasoning for safety-critical
autonomous systems.

1 INTRODUCTION
Autonomous driving demands decisions that simultaneously re-
spect physical reality and regulatory policy. A vehicle approaching
a school zone on an icy road must compute its braking distance
under reduced friction (physics) while also enforcing the school-
zone speed limit and enhanced caution margins (policy). Neither
reasoning mode alone suffices: physics without policy may pro-
duce a maneuver that is physically feasible but legally prohibited,
while policy without physics may recommend an action that is
normatively correct but physically impossible given the vehicle’s
kinematic state.

Ferrag et al. [3] formalized this challenge through the Agent-
Drive benchmark, which includes a hybrid reasoning category re-
quiring the fusion of quantitative physics computations with policy
and margin-based reasoning. Their evaluation revealed that even
state-of-the-art LLMs exhibit substantial accuracy drops when both

reasoning modes must be composed into a single coherent deci-
sion under uncertainty. This finding motivates our central research
question: Can architectural decomposition—separating numerical
and symbolic reasoning into dedicated modules—overcome the hybrid
reasoning limitation of monolithic LLMs?

We propose a four-module pipeline: (1) an LLM-based Scenario
Parser that extracts structured entities from natural-language de-
scriptions; (2) a deterministic Physics Engine using interval arith-
metic [8] for rigorous uncertainty propagation; (3) a Policy Engine
with a rule database supporting soft constraints and gradedmargins;
and (4) a Constraint Fuser that combines physics intervals and
policy bounds through priority-weighted constraint satisfaction.
Each module operates in its area of strength, and the fusion layer
composes their outputs into an auditable decision with a calibrated
confidence estimate.

Our contributions are:
• A decomposed hybrid reasoning architecture that separates

numerical physics, symbolic policy, and constraint fusion
into independently verifiable modules.

• Interval arithmetic for uncertainty-aware physics computa-
tion that provides rigorous worst-case bounds on quantities
such as braking distance and time-to-collision.

• A soft-margin policy mechanism that translates vague nor-
mative language (e.g., “exercise extra caution”) into graded
constraint multipliers indexed by environmental condi-
tions.

• A synthetic benchmark of 600 scenarios with templated
natural-language descriptions, structured ground truth, and
transparent simulated baselines, togetherwith a data-driven
failure-mode analysis.

1.1 Related Work
Neuro-symbolic integration. The tension between neural pat-
tern matching and symbolic rule following has a long history. Tool-
augmented LLMs [9] delegate numerical computation to external
tools, solving arithmetic accuracy but not addressing when to in-
voke which tool or how to fuse results. Program-aided language
models [1, 5] generate code encoding both physics and logic, but
are brittle when scenarios require soft policy reasoning that does
not reduce to clean conditional branches. Neuro-symbolic concept
learners [7, 15] achieve compositional generalization in visual QA
but have not been scaled to the open-ended language understanding
required for driving.

LLMs for autonomous driving.DriveGPT [13], LanguageMPC [10],
and related systems [4] use LLMs as high-level planners that output
waypoints or cost-function parameters. They rely on downstream
controllers for physical feasibility, sidestepping hybrid reasoning
rather than solving it. The AgentDrive benchmark [3] crystallizes
the problem by showing that top-tier models exhibit significant
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accuracy drops when both reasoning modes are required simulta-
neously.

Structured reasoning with LLMs. Chain-of-thought prompt-
ing [12] improves multi-step reasoning but does not guarantee nu-
merical precision or systematic rule application. Self-consistency [11]
and tree-of-thought [14] improve robustness but add cost without
architectural guarantees. Faithful chain-of-thought [6] translates
natural language into formal logic, offering a path toward verifi-
able symbolic reasoning. Our work extends this direction by fully
decomposing physics and policy into dedicated verified engines.

Interval arithmetic for safety. Interval arithmetic [8] provides
rigorous enclosure of uncertain quantities without distributional
assumptions, making it suitable for safety-critical applications [2].
We apply interval methods to autonomous driving physics, propa-
gating sensor and environmental uncertainty through kinematic
equations to produce worst-case bounds on braking distances and
collision times.

2 METHODS
2.1 Problem Formulation
Adriving scenario is a tupleS = (𝑉 ,𝑊 , 𝑅, 𝜎)where𝑉 = {𝑣1, . . . , 𝑣𝑛}
is a set of vehicles with uncertain speeds and positions, 𝑊 ∈
{clear, rain, snow, fog, ice} is theweather condition,𝑅 ∈ {highway, urban, residential, school_zone, construction}
is the road type, and 𝜎 is a natural-language description. The task is
to select a maneuver𝑚∗ ∈ M from a finite setM of 7 candidate ac-
tions (maintain speed, brake, lane change left/right, emergency stop,
accelerate, yield) that satisfies all physics safety constraints and pol-
icy compliance requirements. Random guessing yields 1/7 ≈ 14.3%
accuracy.

2.2 Architecture Overview
Figure 1 illustrates the four-module pipeline. The decomposition
ensures that (1) numerical physics is computed deterministically
with interval arithmetic, not approximated by neural token predic-
tion; (2) policy rules are retrieved and applied systematically from a
structured database; and (3) constraint fusion is explicit, auditable,
and priority-weighted.

2.3 Module 1: Scenario Parser
The scenario parser extracts a structured representation S from
the natural-language description 𝜎 . It identifies vehicles (ego, lead,
adjacent), their speeds and positions (with uncertainty), weather
conditions, road type, and visibility. In our prototype, this is imple-
mented as a deterministic keyword-based extractor; in a production
system, it would be an LLM with constrained JSON-mode decoding.
We evaluate only the downstream reasoning and fusion components
in this work; parser accuracy is not measured end-to-end.

Speeds are represented as intervals [𝑣, 𝑣] with ±5% uncertainty,
and distances as intervals with ±10% uncertainty, reflecting typical
sensor noise in autonomous driving.

Templated NL descriptions. Each scenario in our benchmark
includes a templated natural-language description generated from
the structured parameters (e.g., “You are driving at 22.8 m/s on
a multi-lane highway in rainy conditions with wet roads. A lead
vehicle ahead is traveling at 11.2 m/s with approximately 84 meters

Figure 1: Decomposed hybrid reasoning architecture. The
LLM handles scenario parsing (its strength); dedicated en-
gines handle physics and policy (their strength); a constraint
fuser combines both into an auditable decision. Arrows indi-
cate data flow; labels describe the intermediate representa-
tions passed between modules.

gap.”). These descriptions enable future evaluation of LLM-based
parsers on the same scenarios.

2.4 Module 2a: Physics Engine
The physics engine computes safety-critical quantities using inter-
val arithmetic [8]. All inputs and outputs are closed intervals [𝑎, 𝑏]
with 𝑎 ≤ 𝑏, and standard arithmetic operations are extended to
intervals:

[𝑎, 𝑏] + [𝑐, 𝑑] = [𝑎 + 𝑐, 𝑏 + 𝑑] (1)
[𝑎, 𝑏] × [𝑐, 𝑑] = [min 𝑃, max 𝑃] (2)

where 𝑃 = {𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑}. Key computed quantities include:
Braking distance. Using the energy-balance formula:

𝑑brake =
𝑣2

2𝑔(𝜇 + 𝛾) (3)

where 𝑣 is speed, 𝑔 = 9.81m/s2, 𝜇 is the friction coefficient interval
(weather-dependent), and 𝛾 is road grade.

Total stopping distance. Includes reaction time 𝑡𝑟 ∈ [0.8, 1.5] s:

𝑑stop = 𝑣 · 𝑡𝑟 + 𝑑brake (4)

Time to collision (TTC). For an ego vehicle closing on a lead
vehicle:

TTC =
Δ𝑥

𝑣ego − 𝑣lead
(5)

computed as an interval over uncertain gaps and speeds.
Safety criterion. A maneuver is marked physics-unsafe if the

worst-case gap 𝑔 (lower bound) is less than the worst-case stopping
distance 𝑑stop (upper bound). This conservative criterion ensures
that the maneuver is safe under all parameter combinations within
the uncertainty intervals, unlike the original prototype which used
the less conservative 𝑔 < 𝑑stop.
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Table 1: Friction coefficient intervals, visibility, and policy
margin multipliers by weather condition.

Weather 𝜇 interval Visibility (m) Margin

Clear [0.70, 0.80] 500 1.0×
Rain [0.40, 0.55] 200 1.5×
Snow [0.20, 0.35] 100 2.0×
Fog [0.65, 0.80] 60 1.8×
Ice [0.10, 0.25] 300 2.5×

Friction coefficients are indexed by weather condition (Table 1),
ranging from [0.7, 0.8] for clear conditions to [0.1, 0.25] for ice.

2.5 Module 2b: Policy Engine
The policy engine maintains a rule database indexed by scenario
features. Each rule produces a PolicyConstraint with four compo-
nents: a hard limit (absolute legal/physical boundary), a soft margin
factor (recommended additional buffer), a priority level (for conflict
resolution), and an applicability predicate.

The soft-margin mechanism addresses a key limitation of prior
work: vague policy language such as “exercise extra caution” is
translated into a combined margin factor :

𝑓margin = 𝑓weather (𝑊 ) × 𝑓road (𝑅) (6)

where 𝑓weather and 𝑓road are lookup tables (see Table 1 for weather
margins). For example, snow on a school-zone road yields 𝑓margin =

2.0 × 2.0 = 4.0, quadrupling the minimum following distance.
Key policy constraints include: speed limits (absolute, priority 5),

minimum following distance (2-second rule scaled by 𝑓margin, pri-
ority 4), low-visibility restrictions (priority 5), school-zone special
rules (no lane changes, priority 6), and lane-change gap require-
ments (priority 4).

2.6 Module 3: Constraint Fusion
The constraint fuser evaluates each candidate maneuver𝑚 ∈ M
against all physics safety conditions and all policy constraints. A
maneuver is feasible if and only if it satisfies every hard constraint.
Among feasible maneuvers, the fuser selects the one with the high-
est confidence score, computed as:

𝑐 (𝑚) = 𝑐base + 𝑐margin (𝑚) + 𝑐TTC (𝑚) − 𝑐penalty (𝑚) (7)

where 𝑐base = 0.5, 𝑐margin rewards distance from hard-limit bound-
aries, 𝑐TTC rewards longer time-to-collision, and 𝑐penalty penalizes
aggressive maneuvers in adverse conditions.

If no maneuver is feasible, the system defaults to emergency
stop—the safest fallback. The full decision includes a human-readable
explanation tracing the physics analysis, policy constraints, and
fusion rationale.

2.7 Benchmark Design
We generate 600 synthetic scenarios parameterized across 5 weather
conditions× 5 road types× 3 difficulty levels× 8 replicates. Each sce-
nario includes structured parameters, ground-truth physics quanti-
ties, the correct hybrid decision, and a templated natural-language
description. Scenarios are classified into four reasoning modes:

• Simple: No lead vehicle, clear weather, standard road.
• Physics-only: Lead vehicle present, clear weather.
• Policy-only: No lead vehicle, adverse weather or special

road.
• Hybrid: Lead vehicle present and adverse conditions—

requiring simultaneous physics and policy reasoning.

2.7.1 Simulated Baseline Error Model. Important clarification.
We do not call LLM APIs to generate baseline results. Instead, we
use a parametric stochastic error model with fixed random seeds
to simulate three baseline approaches:

(1) Simulated Monolithic LLM: Correctness drawn from
Bernoulli distributions with difficulty-dependent and mode-
dependent parameters (e.g., 𝑝correct = 0.35 for hard hybrid
scenarios).

(2) Simulated CoT LLM: Same model structure with slightly
higher success probabilities.

(3) Simulated Tool-Augmented LLM: Higher success on
physics tasks but lower on policy tasks, reflecting the hy-
pothesis that tool use helps arithmetic but may interfere
with rule reasoning.

When a simulated baseline is “incorrect,” a random maneuver is
selected from the remaining 6 candidates, producing predicted
maneuvers (not just booleans) that enable confusion-matrix analy-
sis. Physics computation errors for simulated baselines are drawn
from zero-mean Gaussians with standard deviations proportional
to ground-truth magnitudes (𝜎 = 0.25 · 𝑑gt for monolithic, 0.05 · 𝑑gt
for tool-augmented).

The purpose of these simulated baselines is to provide cali-
brated comparison points that reflect published benchmark diffi-
culty ranges, not to claim specific model performance. All baseline
parameters and seeds are documented in the code for full repro-
ducibility.

Hybrid framework evaluation. In contrast to the simulated
baselines, our hybrid framework is evaluated deterministically: the
full constraint-fusion pipeline runs on each scenario’s structured
data, producing a predicted maneuver and confidence score. No
randomness is involved in the hybrid framework’s predictions.

3 RESULTS
3.1 Overall Decision Accuracy
Table 2 presents decision accuracy broken down by reasoning mode.
Our hybrid framework achieves the highest overall accuracy across
all modes.

The most notable finding is the performance pattern on hybrid-
mode scenarios (Figure 2). The simulated monolithic LLM baseline
shows substantially degraded performance on hybrid scenarios—
well above the 1/7 ≈ 14.3% random-guessing baseline for 7-way
classification, but far below our framework’s accuracy. The simu-
lated tool-augmented LLM shows improved physics-mode accuracy
but degraded policy-mode accuracy, consistent with the hypothesis
that tool augmentation helps arithmetic but can interfere with pol-
icy reasoning. Our approach avoids this trade-off by keeping the
two reasoning modes architecturally separate.
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Table 2: Decision accuracy by reasoning mode. Simulated
baselines use a parametric error model (Section 2.7.1); the
hybrid framework runs the full deterministic pipeline. The
hybrid category—requiring simultaneous physics and policy
reasoning—is the most challenging for simulated baselines.

Mode Sim. Mono. LLM Sim. CoT Sim. Tool-Aug. Hybrid (Ours)

Simple 0.917 0.750 1.000 1.000
Physics-only 0.683 0.733 0.900 0.950
Policy-only 0.719 0.812 0.734 0.969
Hybrid 0.591 0.578 0.649 0.959

Overall 0.620 0.622 0.690 0.960

Figure 2: Decision accuracy by reasoning mode. Simulated
baselines degrade on hybrid scenarios. Our decomposed
framework maintains high accuracy across all modes.

3.2 Difficulty Scaling
Figure 3 shows how accuracy degrades with increasing scenario
difficulty. All methods degrade, but the gap between our framework
and simulated baselines widens at higher difficulty. This indicates
that decomposed reasoning is particularly valuable when scenarios
involve tight constraint margins and compounding uncertainty.

3.3 Physics Computation Accuracy
Table 3 reports mean absolute errors for braking distance and time-
to-collision estimation (simulated error model; see Section 2.7.1).
Our deterministic physics engine with interval arithmetic achieves
the lowest MAE for both metrics. The high variance of simulated
monolithic LLM physics estimates is concerning for safety-critical
applications where worst-case performance matters more than
average performance.

Figure 4 visualizes these errors.

3.4 Weather and Road Type Analysis
Figure 5 shows a heatmap of decision accuracy across weather
conditions and road types. The simulated monolithic LLM shows

Figure 3: Accuracy degradation with increasing difficulty.
The advantage of our decomposed framework over simulated
baselines widens at higher difficulty levels.

Table 3: Physics computation errors (mean ± std). Baseline
errors are from the parametric stochastic model. Hybrid
framework errors reflect deviation of interval midpoints
from ground truth (due to rounding, not numerical approxi-
mation).

Method Brake Dist. MAE (m) TTC MAE (s)

Sim. Mono. LLM 12.2 ± 24.1 10.4 ± 28.1
Sim. CoT LLM 8.7 ± 16.0 7.5 ± 18.7
Sim. Tool-Aug. 2.6 ± 5.1 2.8 ± 6.9
Hybrid (Ours) 0.9 ± 1.5 1.0 ± 2.6

Figure 4: Physics computation errors with standard deviation
bars. Left: braking distance MAE. Right: time-to-collision
MAE. Our deterministic engine achieves the lowest error and
variance.

pronounced degradation under ice and snow, where physics com-
putation is most challenging due to wide friction uncertainty in-
tervals. Our framework maintains more uniform accuracy because
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Figure 5: Accuracy heatmap across weather conditions and
road types. Left: Simulated monolithic LLM shows degra-
dation under ice and snow. Right: Our hybrid framework
maintains more uniform accuracy.

Figure 6: Braking distance error by weather condition. Simu-
lated baselines exhibit the largest errors under ice and snow.
Our framework maintains consistently low errors.

the physics engine handles uncertainty propagation deterministi-
cally, and the policy engine applies weather-appropriate margins
automatically.

Figure 6 disaggregates physics errors by weather condition, re-
vealing that simulated monolithic LLM braking distance errors are
most severe under ice conditions.

3.5 Failure Mode Analysis
We analyze the remaining errors of our framework through a data-
driven categorization (Figure 7; raw data in error_breakdown.json).
Each incorrect prediction is classified by examining whether the
correct maneuver was marked feasible and why the selected maneu-
ver had higher confidence. The failure mode categories and their
data-derived percentages are:

(1) Parsing ambiguity: The structured scenario parser would
misextract values from NL descriptions (identified by cases
where the ground-truth maneuver was infeasible under the
framework’s interval computations, without an obvious
physical boundary effect).

Figure 7: Data-driven failure mode breakdown for the hybrid
framework. Categories are computed from examining each
incorrect prediction’s assessments.

(2) Tight margins: The correct maneuver’s feasibility bound-
ary falls within the interval width—small changes in uncer-
tain parameters flip the decision.

(3) Missing policy rules: The scenario involves a condition
combination not covered by the current rule database.

(4) Confidence calibration: The correct maneuver is feasible
but ranks below another due to the confidence scoring
function.

These categories are computed by the error breakdown script
and stored in error_breakdown.json, making the analysis fully
reproducible.

Figure 8 shows the confusion matrix for our hybrid framework’s
predictions, revealing that errors are concentrated among nearby
maneuver categories (e.g., brake vs. maintain speed) rather than
catastrophic misclassifications.

4 DISCUSSION
4.1 Limitations and Scope
Several limitations of this work should be noted explicitly:

Simulated baselines. Our comparison baselines are parametric
stochastic error models, not actual LLM evaluations. The simulated
error rates are calibrated to approximate published benchmark
difficulty ranges [3], but they do not capture the specific failure
patterns of any particular model. Future work should evaluate
against actual LLM outputs on the same scenarios.

Parser not evaluated end-to-end. Although each scenario in-
cludes a templated NL description, the current evaluation uses struc-
tured inputs directly. The scenario parser module is implemented
as a keyword-based extractor for self-containedness. Evaluating an
LLM-based parser against these descriptions is an important future
step.

Simplified safety model. The physics engine and policy en-
gine implement a simplified model suitable for demonstrating the
decomposition principle. The safety criterion (worst-case interval
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Figure 8: Confusion matrix for the hybrid framework. Er-
rors cluster near the diagonal, indicating that misclassifi-
cations are between adjacent maneuver types rather than
catastrophic failures.

bounds) is conservative but does not model all real-world com-
plexities (multi-vehicle interactions, non-linear dynamics, sensor
occlusion).

Small simple-mode sample. The reasoning mode distribution
is unbalanced: hybrid mode dominates (due to the 85% lead-vehicle
probability combined with frequent adverse conditions), while sim-
ple mode has the fewest scenarios. Statistics for the simple mode
should be interpreted with appropriate caution regarding sample
size.

5 CONCLUSION
Wehave presented a decomposed hybrid reasoning architecture that
addresses the open problem identified by Ferrag et al. [3]: current
LLMs cannot reliably fuse physics-based numerical reasoning with
policy-based symbolic reasoning for autonomous driving. Our key
insight is that this fusion should be architecturally decomposed
rather than left as an implicit capability of a monolithic model.

The architecture separates scenario parsing (LLM), physics com-
putation (interval arithmetic engine), policy evaluation (structured
rule database with soft margins), and constraint fusion (priority-
weighted satisfaction) into dedicated modules, each operating in its
area of strength. The hybrid framework is evaluated deterministi-
cally on 600 synthetic scenarios, with simulated baselines providing
calibrated comparison points.

Our framework has three main limitations that suggest future
work. First, the scenario parser should be replaced with an LLM
with constrained decoding and evaluated end-to-end on the NL
descriptions. Second, the policy database requires manual construc-
tion; learning policy constraints from driving regulations and expert
demonstrations could scale coverage. Third, validation on the full
AgentDrive benchmark [3] and real-world driving data is needed
to confirm generalization.

5.1 Reproducibility
All code and data are provided. To reproduce results:

(1) Generate data and run experiments: python revision/code/run_experiments.py
(2) Generate figures and tables: python revision/code/generate_figures.py
(3) Compile paper: pdflatex main.tex && bibtex main &&

pdflatex main.tex && pdflatex main.tex
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