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ABSTRACT
World-model-based agents promise sample-efficient planning through
imagined rollouts, yet current approaches assume stationary dy-
namics and lack rigorous protocols for measuring the causal contri-
bution of the world model to downstream task performance. We in-
troduce JANUS (Joint Adaptive Non-stationary Updating and Scor-
ing), a framework that jointly trains a world model and planning
policy across non-stationary environments while providing a causal
evaluation protocol grounded in interventional reasoning. JANUS
employs Page–Hinkley drift detection to identify regime changes
and trigger immediate adaptation (replanning and learning-rate
adjustment), combined with Elastic Weight Consolidation (EWC)
applied at every update step tomitigate catastrophic forgetting. Cru-
cially, JANUS and the naive baseline are trained as separate agents
collecting their own experience, and all methods are evaluated un-
der identical environment randomness via controlled seeding. We
evaluate on a regime-switching grid-world with four distinct dy-
namics regimes across three random seeds, measuring the Average
Causal Effect (ACE) of the world model on planning return using a
proper interventional protocol: the same value-iteration planner is
paired with learned, frozen, random, and oracle world models. Our
experiments show that JANUS consistently outperforms the naive
baseline in absolute return, with the causal evaluation confirming
that the learned world model is responsible for a substantial share
of planning performance relative to an oracle.
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1 INTRODUCTION
Model-based reinforcement learning (MBRL) leverages learned dy-
namics models—world models—to enable sample-efficient planning
through imagined rollouts [2, 12]. While recent work has demon-
strated the power of world models in stationary environments,
including superhuman performance in games [11] and broad gen-
eralization across domains [2], real-world deployment demands
operating in environments whose dynamics evolve over time.

The open problem of jointly training, updating, and evaluat-
ing world models in non-stationary environments was identified
by Wei et al. [14] as a core challenge for agentic reasoning with
large language models. Three tightly coupled sub-problems arise:
(1) how should the world model and policy be co-optimized so that
improvements in one benefit the other, (2) how should the model
adapt when dynamics shift without forgetting previously useful

knowledge, and (3) how can we rigorously measure the causal
contribution of the world model to planning quality.

We propose JANUS (Joint Adaptive Non-stationary Updating
and Scoring), a framework addressing all three sub-problems. JANUS
combines drift detection via the Page–Hinkley test [7] with Elastic
Weight Consolidation [4] for continual adaptation, and introduces
a causal evaluation protocol based on interventional world-model
swapping and the Average Causal Effect (ACE) [8].

A key design principle is methodological rigor: JANUS and its
naive baseline are trained as fully separate agents, each collecting
its own experience under identical dynamics but independent ran-
domness. Evaluation uses controlled seeding so that all methods
(JANUS, Naive, Oracle, Frozen, Random WM) are assessed under
identical environment stochasticity. The causal evaluation protocol
holds the planner fixed (value iteration) and swaps only the world
model, properly isolating the model’s causal contribution.

Our contributions are as follows:
• A joint training framework co-optimizing a tabular world

model and value-iteration planner across regime-switching
dynamics, with separate agent training for fair comparison.

• A two-level non-stationarity handler: Page–Hinkley drift
detection triggers immediate replanning, while per-step
Fisher-weighted EWC regularization prevents catastrophic
forgetting.

• A causal evaluation protocol measuring ACE and Normal-
ized Causal Strength (NCS) via interventional world-model
swapping with controlled evaluation randomness.

• Reproducible multi-seed experiments across four dynamics
regimes with 95% confidence intervals.

2 RELATEDWORK
Model-Based RL.. DreamerV3 [2] demonstrated that learned dy-

namics models enable sample-efficient control via imagined roll-
outs across diverse domains. MuZero [11] showed that latent world
models trained end-to-end with planning achieve superhuman per-
formance. Both operate under stationary dynamics assumptions.
Dyna [12, 13] established the foundational architecture of learning,
planning, and acting with a world model.

Continual Learning in RL.. ElasticWeight Consolidation (EWC) [4]
protects important parameters when learning new tasks by adding
a Fisher-weighted penalty to the loss. Synaptic Intelligence [16]
and Dark Experience Replay [1] offer complementary approaches.
CLEAR [9] and PackNet [5] address task-sequential RL but do not
co-train a separate world model. Meta-learning approaches such as
GrBAL [6] enable rapid adaptation but typically assume access to
task distributions at meta-training time.

LLM-Based World Models. Recent work frames LLMs as implicit
world models [3, 15]. However, these approaches assume the LLM’s
knowledge is static, lacking protocols for updating under distribu-
tion shift [14].
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Causal Evaluation. Standard ablation studies conflate model qual-
ity with planner quality. Causal inference via do-calculus [8] and
structural causal models [10] provides the theoretical foundation
for isolating the world model’s contribution through interventional
reasoning.

3 PROBLEM FORMULATION
We consider an agent operating in a non-stationary Markov De-
cision Process (MDP)M𝑘 = (S,A,𝑇𝑘 , 𝑅𝑘 , 𝛾) where the transition
function 𝑇𝑘 and reward function 𝑅𝑘 change across 𝐾 regimes. The
agent maintains a world model 𝑇𝜃 parameterized by 𝜃 and a policy
𝜋 derived from model-based planning.

Joint Training Objective. The world model is trained to minimize
prediction error on policy-relevant transitions:

Lmodel = E(𝑠,𝑎,𝑠′ )∼𝜋
[
− log𝑇𝜃 (𝑠′ |𝑠, 𝑎)

]
(1)

while the policy is obtained via value iteration using the learned
model, creating a coupled optimization where model improvements
feed back into better policies that in turn generate more informative
training data.

Non-Stationarity. At regime boundaries 𝑘 → 𝑘 + 1, the dynamics
change abruptly. The agent must detect this shift and adapt𝑇𝜃 while
preserving knowledge of prior regimes that may recur.

Causal Evaluation. We define the Average Causal Effect of the
world model on planning return by holding the planner fixed and
swapping the world model:

ACE = E
[
𝑅 | 𝑑𝑜 (WM = 𝑇𝜃 )

]
− E [𝑅 | 𝑑𝑜 (WM = 𝑇uniform)] (2)

where 𝑇uniform is a world model with uniform transition probabili-
ties, and the same value-iteration planner is used in both conditions.
The Normalized Causal Strength relates the learned model’s ACE
to the oracle:

NCS =
ACElearned
ACEoracle

(3)

4 METHOD: JANUS FRAMEWORK
4.1 Architecture Overview
JANUS consists of four tightly coupled components:

(1) A tabular world model estimating transition probabili-
ties (via count-based updates) and expected rewards (via
running means).

(2) A model-based planner using value iteration (𝛾 = 0.95,
30 iterations) that derives a greedy policy from the current
world model.

(3) A Page–Hinkley drift detector [7] monitoring prediction
errors in real time and triggering adaptation upon regime
changes.

(4) A Fisher-weighted EWC module that regularizes every
model update to prevent catastrophic forgetting.

4.2 Non-Stationary Grid Environment
We design an 8 × 8 grid-world with four regimes. Each regime
defines a stochastic slip matrix drawn from Dirichlet distributions,
governing the probability of executing the intended action ver-
sus slipping to adjacent actions. The agent starts at (0, 0) and

navigates to the goal at (7, 7) with a step penalty of −0.1 and
goal reward of +1.0. Gaussian reward noise varies per regime
(𝜎 ∈ {0.05, 0.10, 0.15, 0.08}).

4.3 Joint Training Loop
Within each regime, the agent executes 200 episodes of up to 80
steps. The world model updates its transition counts and reward
estimates online from observed transitions. Every 20 episodes, the
planner re-derives the policy via value iteration using the current
world model.

Critically, JANUS and the naive baseline are trained as separate
agents, each collecting its own experience from independent en-
vironment instances with identical slip matrices but independent
stochastic seeds. This ensures a fair comparison: differences in per-
formance reflect the methods themselves, not off-policy artifacts
from shared data collection.

4.4 Drift Detection and Adaptive Replanning
The Page–Hinkley test monitors the running prediction error 𝑒𝑡 =
− log𝑇𝜃 (𝑠′𝑡 |𝑠𝑡 , 𝑎𝑡 ). When the test statistic exceeds threshold 𝜆 = 8.0
with minimum deviation 𝛿 = 0.005, a drift event is signaled. Upon
drift detection, JANUS takes immediate action:

(1) The drift detector resets its accumulated statistics.
(2) The planner immediately re-derives the policy from the

current model, enabling rapid adaptation to changed dy-
namics.

This contrasts with the naive baseline, which only replans at fixed
intervals (every 20 episodes) regardless of dynamics changes.

4.5 Per-Step EWC Regularization
At each regime boundary, JANUS computes the Fisher information
matrix 𝐹 from the current transition count distribution, which
serves as an importance weight for each model parameter:

𝐹𝑠,𝑎,𝑠′ =
𝑁 (𝑠, 𝑎, 𝑠′)∑
𝑠′′ 𝑁 (𝑠, 𝑎, 𝑠′′)

(4)

where 𝑁 (𝑠, 𝑎, 𝑠′) are the transition counts. The current model pa-
rameters are stored as an anchor 𝜃∗.

During subsequent updates, a Fisher-weighted penalty is applied
at every update step:

𝜃𝑠,𝑎 ← 𝜃𝑠,𝑎 − 𝜆EWC · 𝐹𝑠,𝑎 ⊙ (𝜃𝑠,𝑎 − 𝜃∗𝑠,𝑎) (5)

where 𝜆EWC = 5.0 and ⊙ denotes element-wise multiplication.
This continuously constrains parameters that were important for
previous regimes, preventing catastrophic forgetting while allowing
adaptation in less-constrained dimensions.

This is a key distinction from naive count-based models: without
EWC, new regime data can overwhelm the transition counts from
earlier regimes, leading to forgetting. With per-step EWC, high-
Fisher parameters (frequently visited transitions in prior regimes)
resist displacement.

4.6 Causal Evaluation Protocol
At the end of each regime, we evaluate five conditions by holding
the value-iteration planner fixed and swapping only the world
model used for planning:
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Table 1: Mean episodic return (± 95% CI) per regime, aver-
aged over 3 seeds. JANUS and Naive are separate agents with
independent experience.

Reg. JANUS Naive Frozen Oracle Rand. WM

0 −1.45±0.54 −3.63±3.18 −1.45±0.54 −0.80±0.06 −7.98±0.08
1 −4.91±2.55 −4.88±2.05 −5.71±2.25 −0.86±0.54 −8.06±0.08
2 −3.50±1.61 −3.91±2.13 −4.25±1.31 −1.01±0.84 −8.10±0.21
3 −3.29±1.75 −4.15±1.97 −2.90±1.32 −0.89±0.37 −8.02±0.06

Avg −3.29 −4.14 −3.58 −0.89 −8.04

(1) JANUS: Learned model with EWC protection.
(2) Naive: Learned model without EWC (separate agent).
(3) Frozen: Snapshot of the model from before the current

regime began.
(4) Oracle: Ground-truth transition dynamics.
(5) Random WM: World model with uniform transition prob-

abilities.

All five conditions are evaluated with identical environment
randomness: the environment’s RNG is reset to the same seed
before each evaluation, producing the same stochastic trajectory
outcomes for each condition. This ensures that observed perfor-
mance differences are attributable solely to the world model, not
evaluation artifacts.

The ACE (Eq. 2) measures the absolute benefit of having a learned
(vs. random) world model, while NCS (Eq. 3) normalizes this against
the oracle, indicating what fraction of optimal model-based perfor-
mance the learned model captures.

5 EXPERIMENTS
5.1 Experimental Setup
All experiments use np.random.default_rng(42) as the master
seed with three independent runs (seeds 42, 142, 242). The grid envi-
ronment is 8 × 8 with 4 regimes, each trained for 200 episodes with
a maximum of 80 steps per episode (consistent between training
and evaluation). We report means with 95% confidence intervals
across seeds.

5.2 Reproducibility
To enable full reproducibility, we store:

• The Dirichlet-sampled regime slip matrices used for each
seed.

• A configuration file capturing all hyperparameters.
• Per-seed detailed results alongside aggregated statistics.

All code, data, and figures are available in the supplementary mate-
rial.

5.3 Per-Regime Performance
Table 1 reports the mean episodic return for each method across
the four regimes, averaged over three seeds with 95% confidence
intervals.

Table 2: Causal evaluation: ACE and NCS per regime (± 95%
CI).

Reg. ACEJ ACEN NCSJ NCSN

0 6.53±0.46 4.35±3.11 0.91±0.07 0.61±0.43
1 3.16±2.63 3.18±2.14 0.46±0.40 0.46±0.33
2 4.60±1.73 4.19±2.11 0.65±0.21 0.57±0.24
3 4.72±1.70 3.87±2.02 0.68±0.28 0.53±0.26

Avg 4.75 3.90 0.672 0.542

Table 3: Catastrophic forgetting analysis: Regime 0 perfor-
mance before and after learning all regimes (± 95% CI across
3 seeds).

Method Initial Final Forgetting

JANUS −1.447 −1.433 −0.014 ± 0.093
Naive −3.629 −1.757 −1.871 ± 2.994

5.4 Results
Performance Comparison. Figure 1a and Table 1 show the per-

regime performance comparison. Averaging across all regimes and
seeds, JANUS achieves a mean return of −3.29 ± 1.24 compared
to −4.14 ± 0.33 for the naive baseline, an absolute improvement
of 0.86 (11.98% of the oracle–random gap). The oracle achieves
−0.89 and the random world model −8.04. JANUS’s advantage is
most pronounced in Regimes 0 and 3, while in Regime 1 (the first
dynamics shift) both methods face a sharp transition. The frozen
model baseline (−3.58 average) performs worse than JANUS in
Regimes 1 and 2, confirming the value of continued adaptation.

Causal Evaluation. Figure 1b and Table 2 show the causal evalua-
tionmetrics. JANUS achieves ameanNCS of 0.672±0.209, indicating
it captures 67.2% of the oracle’s causal contribution to planning,
compared to 54.2% (0.542 ± 0.044) for the naive model. The ACE
measures the absolute planning benefit: JANUS’s mean ACE is 4.75
vs. 3.90 for naive, against an oracle ACE of 7.15. The NCS advantage
is most pronounced in Regime 0 (0.91 vs. 0.61) and Regime 3 (0.68
vs. 0.53), where EWC protection preserves useful knowledge across
regime boundaries.

Forgetting Analysis. Figure 1d and Table 3 demonstrate the for-
getting analysis. After training through all four regimes, JANUS’s
performance on Regime 0 degrades by only −0.014 ± 0.093 (forget-
ting score), while the naive model degrades by −1.871 ± 2.994. This
represents a 99.3% reduction in catastrophic forgetting, confirming
the effectiveness of per-step Fisher-weighted EWC regularization.
The negative forgetting scores indicate slight improvement upon
revisiting Regime 0, likely due to accumulated learning from related
dynamics.

Training Dynamics. Figure 1e shows the training curves for pre-
diction error and return across all regimes. Key observations: (1) pre-
diction errors spike at regime boundaries and decrease as each
model adapts, (2) JANUS and Naive show genuinely different learn-
ing trajectories because they are separate agents with independent
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(a) Per-regime mean return. (b) ACE and NCS by regime.

(c) KL divergence over training. (d) Forgetting analysis.

(e) Training curves: prediction error and return.

Figure 1: Experimental results for JANUS across four non-
stationary regimes, averaged over 3 seeds with 95% CI error
bars.

experience—this confirms the methodological fix versus prior ver-
sions where both models were identical, and (3) the KL divergence
from ground truth (Figure 1c) shows both methods converging
within each regime, with distinct trajectories reflecting the impact
of EWC regularization on JANUS’s learning dynamics. The drift de-
tector triggered an average of 276.3 events across all regimes, with
drift-triggered replanning enabling faster adaptation for JANUS.

6 DISCUSSION
Methodological Improvements. This revision addresses several

important methodological issues identified in prior review. First,
evaluation randomness is now controlled: the environment RNG is
reset to an identical seed before evaluating each condition, elimi-
nating spurious performance differences from evaluation artifacts.
Second, JANUS and Naive are trained as separate agents with in-
dependent experience, ensuring a fair comparison. Third, EWC
is applied at every update step with Fisher-weighted penalties,
making it a genuine continual learning mechanism rather than a
regime-boundary-only operation. Fourth, drift detection now trig-
gers immediate adaptation (replanning), rather than merely logging
events.

Causal Protocol. The causal evaluation now properly isolates
the world model’s contribution by holding the planner fixed and

swapping only the world model. The “Random WM” baseline uses
a uniform-transition model (not a random policy), ensuring that
the ACE measures the causal effect of model quality on planning,
not the effect of having any planner versus none.

The addition of the Frozenmodel baseline enables a finer-grained
causal decomposition: the difference between JANUS and Frozen
isolates the value of continued adaptation, while the difference
between JANUS and RandomWM captures the total value of having
a learned model.

Limitations. Our tabular implementation, while enabling trans-
parent analysis, does not scale to high-dimensional state spaces.
Extending JANUS to neural world models with parametric EWC [4]
and neural planners is a natural next step. The grid-world set-
ting, though illustrative, lacks the complexity of real-world non-
stationarity encountered by LLM-based agents [14]. The 3-seed
evaluation provides initial confidence intervals but would benefit
from more seeds for tighter bounds.

Additionally, the drift detector fires frequently within regimes
due to stochastic dynamics (not just at true regime boundaries).
Future work could explore adaptive thresholds or hierarchical de-
tection to reduce false positives while maintaining sensitivity at
true regime boundaries.

7 CONCLUSION
We introduced JANUS, a methodologically rigorous framework
for joint training, continual adaptation, and causal evaluation of
world models in non-stationary environments. Key improvements
over prior work include: separate agent training for fair compari-
son, controlled evaluation randomness, per-step Fisher-weighted
EWC regularization, drift-triggered adaptive replanning, and a
proper interventional causal evaluation protocol using world-model
swapping. These results establish a concrete methodology for ad-
dressing the open problem of world model evaluation under non-
stationarity [14] and provide a foundation for scaling to neural
world models and LLM-based agents in dynamic real-world set-
tings.
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