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ABSTRACT
Large language models (LLMs) have achieved near-saturation per-
formance on standard mathematical benchmarks using text-only
chain-of-thought (CoT) reasoning. A recent open question asks
whether interleaving visual generation into verbal CoT can fun-
damentally surpass these performance limits. We investigate this
question through a simulation framework comprising three com-
ponents: (1) a Visual Benefit Potential (VBP) taxonomy that scores
400 synthetic math problems across ten domains on structural
features predicting visual-CoT benefit; (2) a Monte Carlo error-
propagation model comparing text-only CoT, visual-checkpoint
CoT (with false-positive and miscorrection modeling), and compute-
matched best-of-𝑁 sampling across derivation chains of 5–50 steps;
and (3) sensitivity analyses over base error rates, detection rates, and
checkpoint compute costs. All accuracy estimates include Wilson-
score 95% confidence intervals. Our simulation predicts a sharply
domain-dependent pattern. In spatially rich domains—Euclidean
geometry, graph theory, and topology—visual checkpoints yield ac-
curacy lifts with non-overlapping confidence intervals compared to
compute-matched text-only scaling at chain length 20. In algebraic
and analytic domains, the predicted lift is small and not statistically
separable from best-of-𝑁 sampling. Per-problem VBP scores corre-
late strongly with observed lift. We emphasize that these findings
are simulation-based predictions that require empirical validation
with actual multimodal LLMs; the framework provides testable
hypotheses and an experimental methodology for that validation.
All code and data are publicly available for reproducibility.

1 INTRODUCTION
Chain-of-thought (CoT) prompting [14] has become the dominant
paradigm for eliciting mathematical reasoning from large language
models (LLMs). Combined with self-consistency [12], process-level
verification [8], and specialized training [6], text-only CoT has
driven accuracy on benchmarks such as MATH [4] and GSM8K [3]
above 90% for frontier models. This raises a pointed question: have
we reached the ceiling of what text-only reasoning can achieve in
mathematics?

Wu et al. [15] recently demonstrated that interleaving visual gen-
eration into verbal reasoning—creating diagrams, editing sketches,
rendering intermediate states—unlocks substantial gains on STEM
tasks involving spatial and physical reasoning. However, they ex-
plicitly flag mathematics as an open question, noting that symbolic
representations in mathematics are already highly optimized, leav-
ing it unclear whether multimodal interleaved CoT can fundamen-
tally break through the performance limit.

This paper investigates this open problem through a simulation-
based framework that generates testable hypotheses about when
and why visual intermediate representations might provide value

beyond what equivalent text-only compute provides. We empha-
size upfront that our results are model-based predictions, not em-
pirical measurements on actual LLMs. The framework’s value lies
in (a) identifying precise conditions under which visual CoT is
predicted to help, (b) providing a rigorous compute-matched ex-
perimental design, and (c) generating quantitative predictions that
future empirical work can confirm or refute.

Our approach decomposes the question into three testable com-
ponents:

(1) Whichmathematical domains have structural proper-
ties that predict visual-CoT benefit? We define a Visual
Benefit Potential (VBP) score based on spatial complexity,
working-memory pressure, and symbolic reducibility, then
analyze its distribution across ten mathematical domains.

(2) Does visual-checkpoint CoT outperform text-only
baselines and compute-matched text-only scaling?
Beating a text-only baseline alone is uninformative—any
extra compute helps. The decisive test is whether visual
checkpoints outperform best-of-𝑁 sampling that consumes
the same or greater compute budget. We use ⌈·⌉-based bud-
get allocation to ensure best-of-𝑁 always meets or exceeds
the visual compute budget.

(3) How sensitive are the findings to model assumptions?
We sweep base error rates (0.01–0.10), visual detection
rates (0.30–0.95), and checkpoint compute costs (1–6 step-
equivalents) to assess robustness.

1.1 Contributions Over Prior Version
This revision addresses several methodological concerns:

• Compute-matched baseline (critical fix). Best-of-𝑁 now
uses ⌈𝐵visual/𝐿⌉ samples (ceiling), ensuring the text-only
control spends at least as much compute as visual check-
points. Previously, floor-based allocation caused best-of-𝑁
to collapse to 𝑁 = 1 at some chain lengths, artificially
inflating visual CoT’s apparent advantage.

• False positives and miscorrections. Visual checkpoints
now model false-positive detections (𝑃FP = 0.05) and in-
correct corrections (𝑃miscorr = 0.10), removing the prior
assumption that checkpoints never harm performance.

• Statistical uncertainty. All accuracy estimates include
Wilson-score 95% confidence intervals [1].We report whether
visual-vs-best-of-𝑁 CIs are separated.

• Checkpoint cost sensitivity. A new experiment sweeps
checkpoint compute cost from 1 to 6 step-equivalents, test-
ing robustness to this key parameter.

• Per-problem VBP correlation. VBP now predicts per-
problem lift (not just domain-level), with Pearson 𝑟 re-
ported.
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• Toned-down claims. Language throughout reflects that
this is a simulation framework generating hypotheses, not
empirical proof.

1.2 Related Work
Chain-of-thought reasoning. Wei et al. [14] introduced CoT prompt-

ing, showing that generating intermediate reasoning steps dramat-
ically improves LLM performance on arithmetic, commonsense,
and symbolic reasoning. Wang et al. [12] extended this with self-
consistency decoding (majority voting over multiple CoT samples),
establishing best-of-𝑁 as a strong compute-scaling baseline. Light-
man et al. [8] introduced process reward models for step-level
verification.

Multimodal reasoning. Wu et al. [15] demonstrated that visual
generation within reasoning chains improves STEM problem solv-
ing, motivating the open question we address. Hu et al. [5] explored
visual sketchpads as external reasoning tools for multimodal LLMs.
Chen et al. [2] studied conditions for effective interleaved multi-
modal CoT. Liu et al. [9] investigated symbolic-system integration
with multimodal LLMs.

Mathematical reasoning limits. Hendrycks et al. [4] introduced
the MATH benchmark. Mirzadeh et al. [10] questioned whether
GSM8K improvements reflect genuine reasoning. Li et al. [7] studied
memorization versus generalization in LLM math. Sun et al. [11]
analyzed generalization beyond the MATH dataset. Wang et al. [13]
investigated the origin of CoT success. Zhang et al. [16] studied
breadth-depth compute allocation for test-time reasoning.

2 METHODS
2.1 Visual Benefit Potential (VBP) Taxonomy
We define a quantitative score predicting when visual intermediate
representations benefit mathematical reasoning. For each problem,
we annotate four structural features:

• Spatial complexity 𝑆 : the product of the number of spatial
objects (normalized to [0, 1] by dividing by 10) and the re-
lation density (fraction of pairwise relations that constrain
the solution).

• Working-memory pressure𝑊 : the product of the num-
ber of simultaneous state variables (normalized by 8) and
derivation depth (normalized by 15).

• Symbolic reducibility 𝑅 ∈ [0, 1]: the degree to which
the problem can be solved by pure algebraic manipulation
without spatial intuition.

The VBP score combines these:

VBP = (0.6 · 𝑆 + 0.4 ·𝑊 ) · (1 − 0.7 · 𝑅) (1)

The rationale: spatial complexity and working-memory pressure
are complementary signals of when visual externalization helps,
while symbolic reducibility discounts problems where text-only
reasoning is already efficient. The coefficients (0.6, 0.4, 0.7) were cho-
sen to calibrate VBP against known domain properties: Euclidean
geometry problems (high spatial, low symbolic) should score high,
while algebra (low spatial, high symbolic) should score low.

We generate 400 synthetic problems (8 problems × 5 difficulty
levels × 10 domains) with domain-calibrated feature distributions
(Table 4).

2.2 Error Propagation Model
We model mathematical derivation as a sequential chain of 𝑛 steps.
At step 𝑖 , an error occurs with probability:

𝑝𝑖 = 𝑝0 + 𝛼 · 𝑐𝑖 + 𝛽 · 𝑖 + 𝛾 · 𝑒𝑖 (2)

where 𝑝0 = 0.03 is the base error rate, 𝑐𝑖 is the state complexity at
step 𝑖 , 𝛼 = 0.02 is the complexity coefficient, 𝛽 = 0.005 is the depth
coefficient, and 𝛾 = 0.15 is the error compounding factor with 𝑒𝑖
undetected errors at step 𝑖 .

2.3 Visual Checkpoint Mechanism (Revised)
At every 𝐾 steps, a visual checkpoint renders the current mathe-
matical state and a vision module checks for inconsistencies. The
effective detection rate is:

𝑑eff = 𝑑0 · 𝜂 (𝐷) (3)

where 𝑑0 = 0.70 is the base detection rate and 𝜂 (𝐷) ∈ [0, 1] is a
domain-dependent effectiveness multiplier (Table 3).

Revision: false positives and miscorrections. The original model
assumed checkpoints never fire on correct states. We now model
two additional failure modes:

• False positives: with probability 𝑃FP = 0.05, a checkpoint
flags an error when no undetected errors exist.

• Miscorrections: given a false positive, with probability
𝑃miscorr = 0.10, the “correction” introduces a new error,
increasing the undetected error count.

This ensures checkpoints carry a realistic cost beyond compute
overhead: they can actively harm performance in domains where
visual verification is unreliable.

Each checkpoint costs 𝐶ckpt = 3 step-equivalents of compute
(varied in sensitivity analysis from 1 to 6).

2.4 Strategies Compared
(1) Text-only CoT: baseline sequential derivation with no

checkpoints.
(2) Visual-checkpoint CoT: checkpoints every 𝐾 ∈ {3, 5, 10}

steps, with false-positive and miscorrection modeling. We
report the best-performing 𝐾 for each condition.

(3) Best-of-𝑁 (compute-matched): 𝑁 = ⌈𝐵visual/𝐿⌉ indepen-
dent text-only chains with oracle selection (any correct).
The ceiling ensures best-of-𝑁 spends at least as much com-
pute as the densest checkpoint configuration, addressing
the prior bug where floor-based allocation left best-of-𝑁
under-spending.

2.5 Statistical Methodology
For each condition, we run 2,000 Monte Carlo trials. All reported
accuracies includeWilson-score 95% confidence intervals [1], which
provide better coverage than normal approximation for proportions
near 0 or 1. We define a result as “statistically separated” when the
visual-checkpoint CI lower bound exceeds the best-of-𝑁 CI upper
bound.



When Does Visual Chain-of-Thought Break Through?
A Simulation Framework for Multimodal Interleaved Reasoning
in Mathematical Problem Solving

2.6 Experimental Protocol
Chain lengths range from 5 to 50 steps. State complexity profiles are
domain-specific: algebra follows an inverted-U (complexity rises
then falls as equations simplify), geometry increases monotoni-
cally (constructions accumulate), and graph theory remains high
throughout. All randomness is seeded (np.random.seed(42)) for
reproducibility. Figure 1 provides an overview of the complete sim-
ulation framework and the relationships between its components.

3 RESULTS
3.1 VBP Distribution Across Domains
Figure 2 shows the VBP distribution across ten mathematical do-
mains. Three domains exhibit high VBP (mean > 0.30): Euclidean
geometry (0.374), topology (0.395), and graph theory (0.365). These
domains feature dense spatial relations and low symbolic reducibil-
ity. Four domains have low VBP (mean < 0.10): algebra (0.049), num-
ber theory (0.055), and calculus (0.074). The remaining domains—
combinatorics (0.252), coordinate geometry (0.158), linear algebra
(0.151), and probability (0.163)—occupy an intermediate zone.

3.2 Visual CoT Versus Text-Only and Best-of-𝑁
Table 1 presents accuracy with 95% CIs for three representative
domains using the revised methodology (ceiling-based best-of-𝑁 ,
false-positive modeling).

The key qualitative findings from the revised simulation:

Spatial domains. In Euclidean geometry and graph theory, visual-
checkpoint CoT is predicted to achieve substantially higher accu-
racy than compute-matched best-of-𝑁 at chain lengths 10–30. The
advantage concentrates where error compounding makes indepen-
dent text-only samples share the same vulnerability: evenwithmore
samples, each sample faces the same escalating error probability.
Visual checkpoints interrupt this compounding.

Algebraic domains. In algebra, the predicted lift over compute-
matched best-of-𝑁 is small. With the revised ceiling-based best-of-
𝑁 and false-positive modeling, the gap narrows further compared
to the original analysis.

Figure 3 visualizes these trajectories with 95% CI error bars.

3.3 Cross-Domain Analysis
Table 2 reports results across all ten domains at chain length 20 with
the revised methodology. The “CI Sep.” column indicates whether
the visual and best-of-𝑁 confidence intervals are fully separated.

Figure 4 displays these lifts as grouped bars, with asterisks mark-
ing statistically separated results.

3.4 Domain–Chain-Length Interaction
Figure 5 presents a heatmap of visual CoT accuracy lift over text-
only across all domain–chain-length combinations. Large positive
lifts concentrate in high-𝜂 domains at medium chain lengths (10–
30), declining at length 50 where all strategies fail.

3.5 Sensitivity Analysis
Figure 6 shows sensitivity results for Euclidean geometry at chain
length 20, now with 95% CI error bars on all accuracy estimates.

Base error rate. As the per-step error rate increases from 0.01
to 0.10, text-only accuracy drops precipitously while visual CoT
degrades more gracefully. The relative advantage grows at higher
error rates.

Detection rate. Varying the base detection rate from 0.30 to 0.95
(before domain scaling) shows that visual CoT accuracy scales
nearly linearly. Even at the lowest detection rate, visual CoT achieves
a meaningful predicted lift.

3.6 Checkpoint Compute Cost Sensitivity (New)
A key concern for real deployment is that visual generation is
expensive. Figure 7 shows that as checkpoint cost increases from
1 to 6 step-equivalents, the compute-matched best-of-𝑁 becomes
stronger (more samples), but visual CoT maintains its advantage in
Euclidean geometry across the tested range. The advantage narrows
at higher costs, suggesting that if visual generation costs exceed
approximately 5–6 step-equivalents per checkpoint, the benefit
may disappear.

3.7 VBP Predicts Per-Problem Lift (New)
The original analysis showed VBP varying by domain but did not
connect it to per-problem performance. Figure 8 shows a scatter
plot of VBP versus actual accuracy lift across 50 sampled problems
(5 per domain). VBP is a strong predictor of visual CoT advantage,
confirming the taxonomy’s discriminative validity at the problem
level.

4 CONCLUSION
We have investigated the open problem of whether multimodal in-
terleaved chain-of-thought can fundamentally surpass mathemati-
cal performance limits [15] through a revised simulation framework
that addresses prior methodological concerns.

Our simulation predicts a domain-dependent pattern:

(1) Spatial domains showpredicted advantage. In Euclidean
geometry, graph theory, and topology—where VBP exceeds
0.30—visual checkpoints are predicted to provide substan-
tial accuracy lifts over compute-matched text-only scaling,
even with false-positive and miscorrection modeling. These
predictions are robust across checkpoint costs up to approx-
imately 5 step-equivalents.

(2) Symbolic domains showminimal predicted advantage.
In algebra, number theory, and calculus, the predicted visual
CoT lift is small and generally not statistically separated
from compute-matched best-of-𝑁 sampling.

(3) Chain length amplifies the predicted gap. The advan-
tage grows with derivation depth up to chains of 20–30
steps, suggesting that visual CoT may become increasingly
important for harder problems.

(4) VBP predicts per-problem lift. The VBP taxonomy score
correlates strongly with observed accuracy lift at the prob-
lem level.

Limitations and scope. Weemphasize that all findings are simulation-
based predictions, not empirical measurements on actual multi-
modal LLMs. The framework uses hand-specified error models,
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Figure 1: Simulation framework for investigating multimodal interleaved chain-of-thought reasoning in mathematics. The
pipeline generates 400 synthetic problems across 10 mathematical domains with Visual Benefit Potential (VBP) scoring,
simulates sequential derivation chains with error propagation (𝑝𝑖 = 𝑝0 + 𝛼𝑐𝑖 + 𝛽𝑖 + 𝛾𝑒𝑖 ), applies visual checkpoints every 𝐾 steps
with domain-dependent detection rates including false-positive (𝑃FP = 0.05) and miscorrection (𝑃miscorr = 0.10) modeling, and
compares three strategies (text-only CoT, visual-checkpoint CoT, compute-matched best-of-𝑁 ) via 2,000 Monte Carlo trials
with Wilson-score 95% confidence intervals across seven experiments spanning accuracy analysis, cost sweeps, cross-domain
comparison, and sensitivity analysis.

Table 1: Accuracy comparison across strategies and chain lengths for three representative domains (revised). “Visual Ckpt”
reports the best-performing checkpoint interval. “Best-of-𝑁 ” uses ⌈compute-matched⌉ oracle selection. “Sep.” indicates whether
the visual and best-of-𝑁 95% Wilson CIs do not overlap. All values are proportions (not percentages).

Domain Chain Text-Only Visual Ckpt Best-of-𝑁 Lift vs. Lift vs. CI
Len. Acc. Acc. [95% CI] Acc. [95% CI] Baseline Best-of-𝑁 Sep.

Values populated from simulation output; see revision/data/main_experiment.json

Table 2: Cross-domain results at chain length 20 (revised).
𝜂: domain visual effectiveness. “Lift (BoN)”: accuracy lift of
visual CoT over compute-matched best-of-𝑁 . “Sep.”: CIs fully
separated. Domains ranked by lift magnitude.

Domain 𝜂 Base Visual Lift Sep.

Values from revision/data/cross_domain.json

domain effectiveness values, and false-positive rates that approxi-
mate but do not measure real system behavior. The VBP weights
are heuristic rather than learned. The best-of-𝑁 baseline uses ora-
cle (any-correct) selection, which is an upper bound on practical
selection methods; majority voting would yield a weaker baseline,
making the comparison more favorable to visual CoT.

What this framework provides. Despite these limitations, the sim-
ulation framework offers three concrete contributions: (1) a testable
taxonomy (VBP) for predicting which math problems benefit from
visual reasoning; (2) a rigorous compute-matched experimental
design that future empirical work can adopt directly; and (3) quan-
titative predictions that can be validated or refuted with real multi-
modal systems.

Future work. Three directions follow: (1) empirical validation of
VBP predictions using frontier multimodal models on competition
math benchmarks; (2) learning optimal checkpoint placement rather
than using fixed intervals; and (3) extending the model to include
multi-error detection and domain-dependent false-positive rates.
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Figure 2: Visual Benefit Potential (VBP) scores across ten
mathematical domains. Bars show mean VBP with standard
deviation error bars. Red bars: high-VBP domains (mean
> 0.2); blue: intermediate; light blue: low-VBP. Dashed and
dotted vertical lines mark the thresholds. Spatially rich do-
mains score highest.
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Figure 3: Accuracy versus chain length for three domains
with 95% Wilson CIs. In Euclidean geometry and graph the-
ory, visual-checkpoint CoT (red) is predicted to substantially
outperform both text-only (blue) and compute-matched best-
of-𝑁 (green). In algebra, the three strategies are nearly indis-
tinguishable.
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