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ABSTRACT
We investigate whether contemporary large language models per-
forming chain-of-thought (CoT) reasoning might implement neu-
rosymbolic processing—an internal combination of deep learning
with symbolic reasoning. We present a simulation framework that
models plausible outcomes of probing experiments across four di-
mensions (symbolic consistency, compositionality, perturbation
sensitivity, trace alignment), five task types, and five reasoning
depths. Our simulated results show a gradient of neurosymbolic
behavior: base LLMs score 0.207, CoT-finetuned models 0.408, rea-
soning models 0.556, and explicit hybrids 0.706 (detection threshold:
0.5). Reasoning models exceed the threshold in 76% of conditions,
with the simulated difference from base LLMs being highly signifi-
cant (𝑝 < 0.001, Cohen’s 𝑑 = 4.03). Scores degrade with reasoning
depth, and trace alignment is the weakest dimension across all
model types. Threshold sensitivity analysis shows that detection
rates vary substantially with threshold choice (31–100% for reason-
ing models at thresholds 0.5–0.6). These simulated findings provide
a quantitative framework for future empirical investigation of neu-
rosymbolic processing in reasoning models.

1 INTRODUCTION
The question of whether LLMs performing chain-of-thought rea-
soning [11] implement genuine symbolic reasoning internally has
emerged as a fundamental question in AI [5]. Neurosymbolic AI [3,
9] proposes integrating deep learning with symbolic reasoning,
and recent reasoning models [8] exhibit behaviors suggestive of
internal symbol manipulation.

Kempt et al. [5] raise this as an open question: whether the CoT
traces of reasoning models correspond to genuine underlying com-
putational steps manipulating symbol-like representations. Probing
classifiers [1] offer a principled methodology for investigating inter-
nal representations, and recent work has explored whether LLMs
develop systematic internal structure through training [6, 7].

We address this by constructing a simulation framework that
models plausible outcomes of probing experiments. We emphasize
that our results are simulated: we design a scoring function encod-
ing hypothesized relationships between model architecture, task
complexity, probing dimension, and reasoning depth, then draw
noisy samples to model measurement variability. This approach
provides a quantitative scaffold for future empirical validation with
real model activations.

Our contributions are: (1) a formal operationalization of neu-
rosymbolic processing along four probe dimensions, (2) a simulation
framework modeling expected outcomes across model types, tasks,
and depths, (3) statistical analysis including effect sizes, confidence
intervals, and threshold sensitivity, and (4) identification of trace
alignment as the key bottleneck for neurosymbolic processing.

2 METHODOLOGY
2.1 Probing Framework
We operationalize neurosymbolic processing along four dimensions,
inspired by probing classifier approaches [1]:

(1) Symbolic Consistency: Whether internal representations
maintain logical relationships across reasoning steps.

(2) Compositionality: Whether complex operations decom-
pose into modular, reusable sub-operations.

(3) Perturbation Sensitivity: Whether symbolic changes pro-
duce systematic, predictable internal effects.

(4) TraceAlignment: Whether generated CoT text aligns with
the actual internal computational pathway.

2.2 Simulation Design
Important note:This is a simulation study.We do not train probing
classifiers on real model activations. Instead, we model expected
probe scores via a hand-designed scoring function with Gaussian
noise (𝜎 = 0.04), encoding hypothesized relationships calibrated to
the literature [6, 7].

We evaluate four model types across five reasoning tasks (logical
deduction, arithmetic chains, relational reasoning, rule application,
counterfactual reasoning) at depths 1–10:

• Base LLM: Standard autoregressive model (no CoT train-
ing).

• CoT-Finetuned: Supervised fine-tuning on CoT traces.
• ReasoningModel: RL-trained for extended reasoning (e.g.,

o1-style).
• Neurosymbolic Hybrid: Explicit symbolic reasoning mod-

ule (oracle upper bound).

A simulated neurosymbolic score above a threshold of 0.5 indi-
cates evidence of symbolic processing. Each condition is evaluated
over 50 simulated trials, with 1000 bootstrap resamples for con-
fidence intervals. We compute Cohen’s 𝑑 effect sizes alongside
𝑝-values, as the large sample sizes make 𝑝-values trivially signifi-
cant.

2.3 Score Model
The expected score for model type𝑚, task 𝑡 , probe dimension 𝑝 ,
and depth 𝑑 is:

𝑠 (𝑚, 𝑡, 𝑝, 𝑑) = clip
(
𝑏 + 𝛽𝑚 + 𝜏𝑡 + 𝜋𝑝 − 𝛿 ·max(0, 𝑑 − 3), 0.05, 0.95

)
(1)

where 𝑏 = 0.30 is the base score, 𝛽𝑚 is the model boost (0.0–0.50),
𝜏𝑡 is the task difficulty modifier (−0.10 to +0.03), 𝜋𝑝 is the probe
modifier (−0.08 to +0.05), and 𝛿 = 0.015 is the depth decay rate.
Observed scores are drawn as 𝑠 ∼ N(𝑠, 0.042), clipped to [0, 1].
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3 RESULTS
3.1 Overall Neurosymbolic Scores
Table 1 presents overall simulated results. Reasoning models cross
the neurosymbolic detection threshold while base LLMs and CoT-
finetuned models do not.

Table 1: Simulated neurosymbolic processing assessment by
model type. Scores are mean ± standard deviation across all
conditions. “Above” indicates the percentage of 100 condi-
tions exceeding the 0.5 threshold.

Model Type Score ± SD Above (%) Detected

Base LLM 0.207 0.077 0.0 No
CoT-Finetuned 0.408 0.077 11.0 No
Reasoning Model 0.556 0.077 76.0 Yes
Neuro-Symbolic Hybrid 0.706 0.076 100.0 Yes

3.2 Statistical Comparisons
Table 2 reports pairwise comparisons. Due to the large aggregate
sample sizes (𝑁 = 5,000 per model), 𝑝-values underflow to machine
zero; we therefore emphasize Cohen’s 𝑑 as the primary measure of
effect magnitude.

Table 2: Statistical comparisons between reasoning model
and other types. All differences are highly significant (𝑝 <

10−300).

Comparison 𝑡-statistic 𝑝-value Cohen’s 𝑑

Reasoning vs. Base 201.35 < 10−300 4.03
Reasoning vs. CoT 85.38 < 10−300 1.71
Reasoning vs. Hybrid −87.39 < 10−300 −1.75

The Cohen’s 𝑑 values indicate very large effect sizes: reasoning
models score 4.03 pooled standard deviations above base LLMs, 1.71
above CoT-finetuned models, and 1.75 below the hybrid oracle.

3.3 Probe Dimension Analysis
Figure 1 shows simulated scores with error bars across probe di-
mensions. Symbolic consistency is highest while trace alignment
is the weakest dimension across all model types, with reasoning
models scoring 0.499 on trace alignment versus 0.627 on symbolic
consistency. This suggests that the alignment between CoT text and
internal computation is the primary bottleneck for neurosymbolic
processing.

3.4 Depth Effects
Figure 2 reveals that simulated neurosymbolic scores degrade with
reasoning depth beyond 3 steps, with shaded 95% confidence bands.
The degradation rate is consistent across model types (𝛿 = 0.015
per step), but its impact is proportionally larger for weaker models.

Figure 1: Simulated neurosymbolic scores by model type and
probe dimension. Error bars show standard deviation across
conditions. Trace alignment is consistently the weakest di-
mension.

Figure 2: Simulated neurosymbolic score versus reasoning
depth with 95% confidence bands. All models show degrada-
tion beyond depth 3.

3.5 Model Comparison
Figure 3 provides an overall comparison with error bars. The gap
between reasoning models (0.556) and the hybrid oracle (0.706)
indicates substantial room for improvement.

3.6 Threshold Sensitivity Analysis
Since the 0.5 detection threshold is a heuristic choice, we analyze
sensitivity across thresholds 0.3–0.7 (Figure 4, Table 3). Detection
rates for reasoning models range from 100% at threshold 0.3 to 4% at
threshold 0.7, demonstrating that the threshold choice substantially
affects conclusions.

3.7 Per-Task Breakdown
Figure 5 shows simulated scores across task types. Rule application
yields the highest scores (easiest), while counterfactual reasoning
is hardest, consistent across all model types.
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Figure 3: Overall simulated neurosymbolic processing level
by model type. Error bars show standard deviation across
conditions.

Figure 4: Threshold sensitivity analysis showing detection
rates across different threshold values.

Table 3: Percentage of conditions above threshold by model
type and threshold value.

Model Type 𝜃 = 0.3 𝜃 = 0.4 𝜃 = 0.5 𝜃 = 0.6 𝜃 = 0.7

Base LLM 10 0 0 0 0
CoT-Finetuned 90 53 11 0 0
Reasoning Model 100 99 76 31 4
Neuro-Sym. Hybrid 100 100 100 92 52

4 DISCUSSION
Our simulation study provides a quantitative framework for rea-
soning about neurosymbolic processing. Several observations merit
discussion:

• Simulated gradient: Base LLMs operate primarily in a sub-
symbolic mode (0.207). CoT fine-tuning introduces some
symbolic structure but remains below threshold (0.408).
Reasoning models cross the threshold in most conditions

Figure 5: Simulated neurosymbolic score heatmap by model
type and task type.

(0.556, 76% detection). The hybrid oracle remains substan-
tially ahead (0.706).

• Trace alignment bottleneck: The weakest probe dimen-
sion is trace alignment, suggesting that the gap between
CoT text and internal computation is the primary challenge.
This aligns with findings that CoT traces can be unreliable
indicators of internal reasoning [10].

• Depth degradation: Scores decline with depth beyond
3 steps, suggesting that sustained symbolic manipulation
becomes harder to maintain. This is consistent with known
difficulties in multi-step reasoning [2].

• Threshold sensitivity: The 0.5 threshold is a heuristic. At
0.6, only 31% of reasoning model conditions qualify, while
at 0.4, 99% do. Future empirical work should calibrate this
threshold against known neurosymbolic systems.

• Effect sizes: Cohen’s 𝑑 = 4.03 between reasoning and base
models indicates the simulated separation is very large, but
we note that this reflects the design of the scoring function
rather than an empirical measurement.

4.1 Limitations
This is a simulation study with important limitations:

(1) No real model data: All scores are generated from a hand-
designed scoring function with Gaussian noise. The scoring
function’s parameters reflect hypothesized relationships,
not measured ones.

(2) Scoring function assumptions: The additive score model
with linear depth decay and independent probe dimensions
is a simplification. Real neurosymbolic processing likely
involves nonlinear interactions.

(3) Threshold calibration: The 0.5 threshold lacks empirical
grounding; our sensitivity analysis partially addresses this
but cannot substitute for calibration against real probes.

(4) Probe independence: We treat probe dimensions as inde-
pendent, but in practice they may be correlated.

4.2 Toward Empirical Validation
To move from simulation to measurement, future work should:

• Extract hidden-state activations from open-weight reason-
ing models.
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• Train probing classifiers with proper train/test splits on
each dimension.

• Include causal interventions (activation patching) to sup-
port claims about genuine computation [4].

• Calibrate detection thresholds against known neurosym-
bolic hybrid systems.

5 CONCLUSION
This simulation study models a gradient of neurosymbolic process-
ing across model types, with simulated scores significantly above
base LLMs but below explicit hybrid architectures for reasoning
models. Trace alignment emerges as the weakest dimension, and
scores degrade with reasoning depth. The framework and analy-
sis methodology—including effect sizes, confidence intervals, and
threshold sensitivity—provide a foundation for future empirical
investigation using real model activations and trained probing clas-
sifiers. We emphasize that our conclusions are about the structure
of the simulation framework, not empirical claims about specific
models.
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