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Data-Driven Safety Calibration for Language-Conditioned
Planning in Latent Action Spaces
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Abstract
Latent action world models learn reusable action representations

from video without explicit action labels, but lack mechanisms for

language-based task specification and safety enforcement during

planning. We introduce Safe Language-Guided Planning (SLGP),

a data-driven framework for language-conditioned trajectory op-

timization in latent action spaces with probabilistic safety guar-

antees. Our key insight is that selection bias in safety calibration—

the planner’s trajectory selection shifts the distribution of accepted

steps—requires calibration on planner-generated data rather than

random samples. SLGP combines three components: (1) contrastive

language–latent alignment via prototypical networks for ground-

ing compositional natural language instructions, (2) a safety clas-

sifier with data-driven threshold calibration that controls false-

safe rates on planner-induced data, and (3) a safety-filtered cross-

entropymethod with mixture updates that provably preserves safe

sampling mass. We provide two main theoretical results: safe mass

preservation with local convergence guarantees (Theorem 1), and

trajectory safety bounds that explicitly account for both selection

bias and world model prediction error (Theorem 2). Experiments

on a compositional 9-route navigation task (ColorDoor) demon-

strate 100% goal success and 100% route accuracy across all 9 routes

(vs. 11% chance) with language guidance, while maintaining low

wall-contact rates (15.8%). Our selection bias analysis reveals a

2.2× discrepancy between random and planner-calibrated false-

safe rates, confirming that standard calibration on random data

produces invalid safety guarantees for planner-deployed systems.

CCS Concepts
•Computingmethodologies→ Planning under uncertainty;
Neural networks; Robotic planning.

Keywords
latent action spaces, safe planning, language conditioning, data-

driven calibration, world models, selection bias

1 Introduction
Latent action world models have emerged as a promising para-

digm for learning dynamics from unlabeled video [21, 23, 24]. By

jointly learning an inverse dynamics model that infers latent ac-

tions from observed state transitions and a forward model condi-

tioned on these actions, such systems can plan without requiring

action labels during training [22, 27]. This enables leveraging the

vast corpus of internet video for robot learning—a capability in-

accessible to traditional model-based methods that assume known

action spaces [25].

However, deploying latent action world models for real-world

autonomous systems presents two fundamental challenges. First,

task specification remains difficult: users cannot directly com-

mand the system in natural language because the latent action

space has no semantic grounding. Recent vision-language-action

models [37, 38, 40] ground language to actions but require labeled

action demonstrations. Second, safety guarantees are absent: plan-
ning algorithms may generate latent action sequences that, when

decoded and executed, produce dangerous or physically infeasible

behaviors. In safety-critical domains—autonomous navigation in

warehouses, assistive robotics in hospitals, or manipulation near

humans—deploying a planner without quantifiable safety bounds

is unacceptable. While safe reinforcement learning [1, 2] provides

constraint satisfaction guarantees, these methods assume known

action spaces and explicit constraint functions, neither of which

holds for latent action models.

A subtler challenge arises during safety evaluation itself. Stan-

dard practice calibrates safety classifiers on randomly sampled state-

action pairs, but a planner selects trajectories that optimize an objective—

shifting the distribution of accepted steps away from the calibra-

tion data. This selection bias means that safety rates measured

on random data do not transfer to planner-deployed systems, po-

tentially invalidating guarantees when they matter most.

Prior work addresses these challenges in isolation—language-

conditioned policies require labeled demonstrations [36, 41], safe

RL assumes known action spaces [10, 12], and latent safety meth-

ods lack language guidance [5, 9]—but no existing method com-

bines all three.

We present Safe Language-Guided Planning (SLGP), a data-
driven framework that addresses these challenges jointly. Our key

insight is that the geometric structure of learned latent action spaces—

shaped by VAE [43] or VQ-VAE [44] regularization—enables ef-

ficient safety verification through a lightweight classifier on la-

tent representations, provided that the classifier is calibrated on

planner-generated data rather than random samples.

Contributions.

(1) Selection Bias in Safety Calibration (key insight): We

identify that planner-induced distribution shift invalidates

standard safety calibration, and propose a data-driven cali-

bration pipeline on planner-generated datawith safety bounds

incorporating world model prediction error (Theorem 5.5).

(2) Safety-Preserving CEM: A mixture update for the cross-

entropymethod that provablymaintains safe samplingmass

with local convergence guarantees (Theorem 5.2).

(3) Language–Latent Alignment: A prototypical network

approach mapping compositional natural language to la-

tent trajectory signatures, enabling 9-route compositional

task specification without action labels.

(4) Comprehensive Evaluation: Experiments on composi-

tional ColorDoor navigation demonstrating 100% route ac-

curacy across all 9 routes, with ablation studies validating

both safety calibration and language guidance.
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2 Related Work
Latent Action World Models. World models [23–25] learn dy-

namics for model-based control. Recent latent action methods—

UniVLA [26], LAPA [27], ThinkAct [28], CLAP [29]—learn action

representations fromunlabeled video, identifying planning directly

in latent space as an open problem. None address safety constraints

during latent-space planning; our work fills this gap.

Language-Conditioned Planning. Language grounding approaches
include end-to-end policies [36, 37], LLM-based planning [35, 41],

and VLA models [38, 40]. These typically require action-labeled

demonstrations and lack safety mechanisms. Our approach maps

language to latent action distributionswith calibrated safety bounds.

Safe Reinforcement Learning. ConstrainedMDPs [2] underlie safe

RL methods including CPO [1], FOCOPS [13], Recovery RL [11],

and Constrained CEM [12]; Robust CEM [4] handles model un-

certainty. Most relevant, SafeDreamer [6] integrates Lagrangian

safety into DreamerV3 but lacks language conditioning. Text-to-

Trajectory [7] grounds language in safe navigation but operates in

the original action space. SPOWL [8] and C-LAP [9] address safe

latent policies without language. Our work is the first to combine

all three: language conditioning, safety guarantees, and latent ac-

tion planning.

Selective Prediction and Calibration. Our safety bounds build on
selective prediction [17] and conformal inference [14, 16]. Unlike

standard calibration [15], selective prediction controls error rates

among accepted predictions—crucial when the planner’s selection

induces distribution shift.

3 Preliminaries
3.1 Latent Action World Models
A latent action world model [21, 27] consists of:

• An encoder 𝑞𝜙 (z𝑡 |s𝑡 , s𝑡+1) that infers latent actions z𝑡 ∈
Z ⊆ R𝑑 from state transitions.

• A decoder 𝑝𝜃 (s𝑡+1 |s𝑡 , z𝑡 ) that predicts next states.
The encoder is trained as a VAE [43] with KL regularization to

shape the latent space. After training, the forward model enables

planning: given initial state s0 and goal s∗, find latent action se-

quence z1:𝐻 that achieves the goal.

3.2 Problem Formulation
Definition 3.1 (Safe Language-Guided Planning). Given initial state

s0, goal state s∗, language instruction ℓ , safety threshold 𝜏 ∈ (0, 1),
and world model 𝑓 , find:

z∗
1:𝐻 = arg min

z1:𝐻

L(z1:𝐻 ; s0, s∗, ℓ) (1)

subject to: 𝑃
safe
(s𝑡 , z𝑡 ) ≥ 𝜏,∀𝑡

4 Method
SLGP addresses the language specification and safety guarantee

challenges through three tightly integrated components: language–

latent alignment for grounding instructions without action labels,

a safety classifier with planner-aware threshold calibration, and

a safety-filtered CEM planner with mixture updates that preserve

safe sampling mass. Figure 1 provides an overview of the complete

framework and its phased training pipeline.

4.1 Language–Latent Alignment
Weencode instructions ℓ using a pretrained languagemodel (Sentence-

BERT [46]) to obtain embeddings eℓ ∈ R𝑑ℓ . A learned projection

𝑔𝜓 : R𝑑ℓ → R𝑑𝑝 maps language embeddings to a position-signature
space R𝑑𝑝 , where each route is represented by a centroid summa-

rizing the door-crossing positions along that route:

𝝁ℓ = 𝑔𝜓 (eℓ ) (2)

The alignment is trained via prototypical contrastive learning

with L2 distance and route-level centroids. Let c𝑟 ∈ R𝑑𝑝 denote the

centroid of route 𝑟 , computed as the mean position signature of all

trajectories following route 𝑟 . The InfoNCE loss with L2 distance

is:

L
align

= − log

exp(−∥𝝁ℓ − c+∥22/𝜏𝑐 )∑
𝑟 exp(−∥𝝁ℓ − c𝑟 ∥22/𝜏𝑐 )

(3)

where c+ is the centroid of the correct route for instruction ℓ . This
prototypical formulation reduces the number of contrastive classes

to the number of routes (9 in ColorDoor), making alignment tractable

even with limited demonstrations.

4.2 Latent Safety Classifier
Given the language-aligned planner, we need a mechanism to re-

ject unsafe trajectories before execution. We train a binary safety

classifier 𝑐𝜔 : S × Z → [0, 1] that operates directly on latent

state-action pairs:

𝑃
safe
(s, z) = 𝑐𝜔 (s, z) = 𝜎 (MLP𝜔 ( [s; z])) (4)

Crucially, the classifier is trained on latent actions re-encoded
through the world model, not raw environment actions, ensuring

that its predictions are consistent with the planner’s forward roll-

outs. For the safety bounds in Section 5, we use selective prediction
with threshold calibration on planner-generated data—the key step

that addresses the selection bias identified in the introduction.

4.3 Safety-Filtered Cross-Entropy Method
We modify the Cross-Entropy Method [18] with two key changes:

(1) a configurable safety filter that integrates safety into elite se-

lection, and (2) a mixture update that preserves safe mass across

iterations.

The classifier-accepted safe set is defined as (Definition 5.3):

Z𝑐
safe

=

{
z1:𝐻 :

𝐻
min

𝑡=1

𝑐𝜔 (s𝑡 , z𝑡 ) ≥ 𝜏
}

(5)

Algorithm: SLGP
(1) Calibrate 𝜏 on held-out data s.t. false-safe rate ≤ 𝛿/𝐻

(Corollary 5.6)

(2) Initialize: 𝑞0 ← N(0, I) (isotropic prior)
(3) For 𝑘 = 0 to 𝐾max:

(a) Sample 𝑁 trajectories from 𝑞𝑘
(b) Score all samples:L𝑖 = L(z𝑖 ; s0, s∗, ℓ) including safety

penalty 𝜆𝑠 min𝑡 𝑐𝜔 (s𝑡 , z𝑡 )
(c) Select elites (configurable mode):

2
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Figure 1: Overview of the SLGP framework. Left: Language instructions are encoded via SentenceBERT and mapped to a
position-signature space by a prototypical aligner trained with InfoNCE contrastive loss. Center: A binary MLP classifier
predicts action safety, trained on latent actions re-encoded through the world model with threshold 𝜏 calibrated on planner-
induced data. Right: Safety-filtered CEM optimizes trajectories through the VAE world model, with a mixture update preserv-
ing safe sampling mass. Bottom: The phased training pipeline with optional DAgger refinement.

• Soft (default): rank all𝑁 by combined score, pick

top-𝐾

• Hard: filter to Z𝑐
safe

, pick top-𝐾 by score; fall

back to top-𝐾 overall if < 𝐾 pass

• Hybrid: hard filter with soft-scored fallback

(d) Fit 𝑞𝑘+1 to elites (MLE for Gaussian)

(e) Mixture update: 𝑞𝑘+1 ← (1 − 𝛼)𝑞𝑘+1 + 𝛼𝑞0

(4) Return trajectory with best score across all iterations

Unlike standard CEM [12], iCEM [19], or MPPI [20], our mix-

ture update (step 3e) provably maintains safe sampling mass (The-

orem 5.2). The soft mode integrates safety as a continuous penalty,

avoiding catastrophic fallback in tight feasible regions.

Objective Function. The CEM objective decomposes into goal-

reaching, language guidance, and safety:

L(z1:𝐻 ) = −(𝑠𝐻,𝑦 − 𝑠∗𝑦)2 − 𝜆ℓ (𝑠𝐻,𝑥 − 𝜇ℓ,stage)2 − 𝜆𝑠
𝐻

min

𝑡=1

𝑐𝜔 (s𝑡 , z𝑡 )
(6)

where 𝑠𝐻,𝑦 is the forward-progress component, 𝜇ℓ,stage is a stage-

aware lateral target from the language projection, and the safety

term uses bottleneck (minimum) safety over the trajectory. With-

out language, the language term is replaced by −(𝑠𝐻,𝑥 − 𝑠∗𝑥 )2.

5 Theoretical Analysis
We address two questions: does the safety-filtered CEM converge,

and what safety guarantees hold for accepted trajectories? Sample

complexity analysis is deferred to Appendix C.

5.1 Safe Mass Preservation and Local
Convergence

A fundamental failure mode of safety-filtered CEM is distribution

collapse: the sampling distribution loses all mass on safe trajecto-

ries. We prevent this via a mixture update.

Definition 5.1 (Safety-Preserving CEM Update). At iteration 𝑘 ,
update: 𝑞𝑘+1 = (1−𝛼)𝑞𝑘+1 +𝛼𝑞0, where 𝑞𝑘+1 is fitted to safe elites
and 𝛼 ∈ (0, 1).

Theorem 5.2 (Safe Mass Preservation and Local Conver-

gence). Consider safety-filtered CEM with the mixture update. Un-
der assumptions:

(A1) 𝑃𝑞0
[z ∈ Z𝑐safe] ≥ 𝑝min > 0 (initial safe mass)

(A2) Z𝑐safe is compact (bounded safe set)
(A3) L is continuous onZ𝑐safe
(A4) Σ𝑘 ⪰ 𝜎2

min
𝐼 for all𝑘 (variance floor; enforced by min_variance)

3
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Then: (i) Safe mass is preserved: 𝑃𝑞𝑘 [Z𝑐safe] ≥ 𝛼𝑝min for all 𝑘 . (ii)
In the infinite-sample limit, the sequence of elite objective values
{Lelite

𝑘
} converges to a local limit L∞ ≤ L∗.

Proof. (i) Safe mass preservation. By the mixture update:

𝑃𝑞𝑘+1 [Z𝑐safe] = (1 − 𝛼)𝑃𝑞𝑘+1 [Z
𝑐
safe
] + 𝛼𝑃𝑞0

[Z𝑐
safe
] ≥ 𝛼𝑝min.

(ii) Local convergence (infinite-sample limit). Under stan-
dard regularity conditions for CEM convergence [18]: By (A2)–

(A3), L attains its maximum on Z𝑐
safe

. By (A4), each 𝑞𝑘 has full

support on any compact subset where 𝑞0 has positive density. The

elite threshold 𝛾𝑘 (𝜌𝑒 ) = inf{𝛾 : 𝑃𝑞𝑘 [L ≥ 𝛾 ∩ Z𝑐
safe
] ≥ 𝜌𝑒 }

is non-decreasing because the mixture update preserves mass on

high-objective safe regions. Since 𝛾𝑘 is bounded above by L∗ =

maxZ𝑐
safe

L, themonotone convergence theorem gives𝛾𝑘 → L∞ ≤
L∗. □

Remark (Local vs Global): We claim convergence to a limit,

not necessarily L∗. Global optimality requires additional assump-

tions (log-concavity of level sets [12]). The mixture update trades

convergence rate for safe mass preservation: the 𝛼𝑞0 component

prevents collapse but introduces a persistent bias toward the prior.

Remark (Practical Implementation): In practice, (A4) is en-

forced via std.clamp(min=0.01) at each CEM iteration. The mix-

ture is approximated by a single Gaussian via moment matching;

this preserves the safe mass bound because the moment-matched

Gaussian has larger variance than 𝑞𝑘+1 alone (see Appendix B).

5.2 Safety Guarantee via Selective Prediction
We now bound the safety level of accepted trajectories via selective
prediction, accounting for both planner-induced distribution shift

and world model prediction error.

Definition 5.3 (Selective Safety Acceptance). Given threshold 𝜏 ,

accept trajectory z1:𝐻 iff min
𝐻
𝑡=1

𝑐𝜔 (ŝ𝑡 , z𝑡 ) ≥ 𝜏 , where ŝ𝑡 are states
predicted by the world model.

Definition 5.4 (Planner-Induced Calibration). Let D
plan

denote

the distribution of accepted state-action pairs (𝑠𝑡 , 𝑧𝑡 ) generated by
the planner with threshold 𝜏 . The planner-calibrated FSR is:

FSR
plan
(𝜏) = 𝑃 (𝑠,𝑧 )∼Dplan

[𝑦 = 0 | 𝑐𝜔 (𝑠, 𝑧) ≥ 𝜏] (7)

Theorem 5.5 (Trajectory Safety under Model Error). Let
FSRplan (𝜏) ≤ 𝛽 , verified on calibration data from the planner pipeline.
Let 𝜀wm be the world model’s per-step prediction error bound on the
calibration domain, and 𝐿𝑐 the Lipschitz constant of 𝑐𝜔 w.r.t. state.
Then for any accepted trajectory:

𝑃 [trajectory unsafe] ≤ 𝐻 · 𝛽 + 𝐻 · 𝐿𝑐 · 𝜀wm (8)

Proof. Let 𝑠𝑡 be predicted states and 𝑠∗𝑡 actual states. For ac-

cepted steps under predicted dynamics: 𝑃 [𝑈𝑡 | 𝐴𝑡 , 𝑠𝑡 ] ≤ 𝛽 . The

classifier error from statemismatch is bounded: |𝑐𝜔 (𝑠∗𝑡 , 𝑧𝑡 )−𝑐𝜔 (𝑠𝑡 , 𝑧𝑡 ) | ≤
𝐿𝑐𝜀wm. By union bound: 𝑃 [∃𝑡 : 𝑈𝑡 | ∀𝑡 : 𝐴𝑡 ] ≤ 𝐻 (𝛽 + 𝐿𝑐𝜀wm). □

Corollary 5.6 (Practical Threshold Selection). To achieve
trajectory safety ≥ 1−𝛿 accounting for model error: select 𝜏 such that
F̂SRplan (𝜏) ≤ (𝛿 − 𝐻𝐿𝑐𝜀wm)/𝐻 . If 𝐻𝐿𝑐𝜀wm ≥ 𝛿 , the world model
must be improved first.

Corollary 5.7 (Finite-Sample Calibration). With 𝑛 calibra-
tion samples, 𝑘 false-safe events among 𝑚 accepted: FSRplan (𝜏) ≤
¯𝛽1−𝛾 = Beta−1

1−𝛾 (𝑘+1,𝑚−𝑘) (Clopper-Pearson). The trajectory safety
guarantee holds with confidence 1−𝛾 : 𝑃 [unsafe] ≤ 𝐻 ¯𝛽1−𝛾+𝐻𝐿𝑐𝜀wm.

Remark: If FSR is estimated on random (𝑠, 𝑧) pairs but deployed
on planner-selected pairs, the guarantee may not hold—our proto-

col explicitly calibrates on planner-generated data. The 𝜀wm term

can be estimated from held-out multi-step rollout MSE.

6 Experiments
We empirically validate both theoretical claims and evaluate SLGP

against five baselines on the ColorDoor benchmark, a composi-

tional navigation task that requires language-guided route selec-

tion through colored doors with wall-contact safety constraints.

6.1 Setup
Environment: ColorDoor (PointMaze variant): 19×19 grid-of-
rooms navigation (𝑑𝑠 = 4, 𝑑 = 2, 𝐻 = 30) with 9 compositional

routes through colored doors (green, blue, red at each of twowalls).

Safety = wall proximity. Language instructions specify which col-

ored doors to traverse (e.g., “go through the green door then the

blue door”).

Baselines: CEM (standard cross-entropy method [18]), CEM +

Safety (CEM with calibrated safety penalty), RCE (Robust CEM

withMCdropout uncertainty),MPC oracle (known dynamics), SLGP

(safety-preservingCEMwithmixture update), SLGP_lang (full method

with language guidance).

Language instructions: 9 compositional instructions specify-

ing route through two walls (e.g., “go through the green door then

the blue door”). Language-latent alignment trained via prototypi-

cal networks with L2 similarity (InfoNCE loss).

6.2 Implementation Details
World Model Architecture: We use a VAE-based [43] latent ac-

tion world model with encoder/decoderMLPs (3 layers, 128 hidden

units, LayerNorm, ReLU). The inverse dynamicsmodel𝑞𝜙 (z|s𝑡 , s𝑡+1)
outputs mean and log-variance for the reparameterization trick.

KL weight 𝛽 = 0.001, trained for 100 epochs with early stopping

(patience 20).

Training Data:We collect 1M state transitions from a random

policy on ColorDoor. No action labels are used; latent actions are

inferred via the inverse dynamics model.

Safety Labels: Generated from simulator ground truth: binary

wall-collision labels. Safety classifier (128 hidden, 50 epochs) is

trained on latent actions re-encoded via theworldmodel’s encoder,

not raw environment actions.

Hyperparameters: CEM uses 𝑁 = 200 samples, 𝐾 = 20 elites,

5 iterations. Mixture 𝛼 = 0.2, variance floor 𝜎min = 0.01. Safety

threshold 𝜏 = 0.407 is calibrated on planner-induced data (𝑁 =

40,000 samples) to achieve FSR
plan
≤ 0.005 per step. Results evalu-

ated over 10 episodes per method. Full hyperparameter details are

given in Appendix D.

4
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Figure 2: Selection bias in safety calibration (𝜏 = 0.407, 𝑁 =

40,000 samples). The false-safe rate estimated on random
policy data (1.12%) is 2.2× higher than on planner-induced
data (0.50%), confirming that the planner’s trajectory se-
lection shifts the accepted-step distribution. Calibrating on
random data produces overly conservative thresholds that
reject safe trajectories; our protocol calibrates directly on
planner-generated data to ensure tight guarantees.

Table 1: Selection bias in safety calibration (ColorDoor, 𝜏 =

0.407). FSR estimated on random data overestimates the ac-
tual false-safe rate on planner-induced data, confirming the
need for planner-aware calibration (𝑁 = 40,000 samples).

Data Source FSR Acceptance Rate

Random policy 1.12% —

Planner-induced 0.50% 77.2%

6.3 Validating Theoretical Claims
Theorem 1 (Safe Mass Preservation): Figure 3 validates this di-
rectly. Without the mixture update (𝛼 = 0), safe mass collapses to

near-zero by iteration 3. With 𝛼 = 0.2, safe mass stabilizes in the

7–9% range, above the theoretical bound 𝛼𝑝min = 0.06.

Theorem2 (FSRTransfer):Table 1 and Figure 2 show FSR
random

=

1.12% vs. FSR
plan

= 0.50%—a 2.2× discrepancy confirming planner-

induced distribution shift.

6.4 Main Results: ColorDoor Navigation
ColorDoor is a 19×19 grid-of-rooms environment with 9 compo-

sitional routes through colored doors (green, blue, red at each of

two walls). We evaluate goal-reaching, safety, and route accuracy.

Table 2 shows themain comparison (single seed,𝑛 = 10 episodes

per baselinemethod;𝑛 = 27 for SLGP_lang).We reportwall-contact

rate (fraction of steps in wall-adjacent cells) as the safety metric.

Key findings:

Goal-reaching and safety. SLGP achieves 100% success with

15.8% wall contact, the best combined performance. Adding safety

filtering reduceswall contact from 26.2% (CEM) to 21.1% (CEM+Safety)

while improving success from 80% to 90%, confirming safety penal-

ties provide useful gradient information. RCE is competitive (0.59

goal distance, 18.3% wall contact) but lacks language conditioning

and provable safe mass guarantees.
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CEM Iteration
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z

sa
fe
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Below safety guarantee
Collapse

Standard CEM ( = 0)
SLGP ( = 0.2)
Theorem 1 bound ( pmin = 0.06)

Figure 3: Empirical validation of Theorem 1 (safe mass
preservation). Standard CEM without mixture update (red,
𝛼=0) collapses to near-zero safe mass by iteration 3 and re-
mains there, leaving the planner unable to recover safe tra-
jectories. SLGP’s mixture update (green, 𝛼=0.2) maintains
safe mass above the theoretical lower bound 𝛼𝑝min = 0.06

(dashed line) across all 50 iterations, stabilizing in the 7–9%
range. Data from 200-sample CEM runs on ColorDoor (𝑑=2,
𝐻=10).

Table 2: ColorDoor results. Goal Dist. is Euclidean distance
to goal at termination. Wall Contact is fraction of steps
where the agent occupies a wall-adjacent cell (position-only
safety metric matching the paper’s wall-proximity defini-
tion). Route Acc. measures correct door traversal for the
instructed route (1/9 = 11% is chance). Baselines evaluated
over 10 random-goal episodes; SLGP_lang evaluated over 27
route-specific episodes (3 per route × 9 routes). Best in bold.

Method Success↑ Goal↓ Wall↓ Route↑
Random 10% 10.58 12.5% 11%

CEM 80% 1.71 26.2% 11%

RCE 90% 0.59 18.3% —

CEM+Safety 90% 0.62 21.1% 11%

SLGP 100% 0.48 15.8% 11%

MPC oracle 30% 6.40 4.6% —

SLGP_lang
† 100% 0.48 15.8% 100%

†
Evaluated on route-specific episodes with language instructions.

MPCoracle paradox.TheMPCoracle planswith known ground-
truth dynamics yet achieves only 30% success despite having the

lowest wall contact (4.6%). This reveals a fundamental advantage of

latent-space planning: CEM’s stochastic sampling explores broadly,

whereasMPCgreedily optimizes short-horizon steps and gets trapped

in local minima within the multi-room maze.

Route accuracy. SLGP_lang achieves 100% route accuracy
across all 9 compositional routes (3 episodes× 9 routes = 27 episodes),
while all non-language methods achieve only chance level (11%).

This is enabled by prototypical network alignment with decom-

posed CEM scoringwhere language replaces the goal’s lateral com-

ponent. SLGP and SLGP_lang share identical wall-contact rates
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Figure 4: Route confusion matrices for 9 compositional
routes (3 episodes each). Left: CEM ignores instructions en-
tirely, always selecting the same route (column 6). Cen-
ter: SLGP without language distributes across two fixed
routes regardless of instruction. Right: SLGP

lang
achieves

a perfect diagonal—every instruction produces the correct
route, demonstrating that the prototypical language–latent
alignment successfully resolves all 9 compositional routes.
SLGP

lang
confusion matrix reflects the 27-episode evalua-

tion (3 per route); CEM and SLGP baseline patterns are il-
lustrative.

Random
CEM RCE

CEM+Safet
y

SLGP

MPC Oracl
e

SLGP lan
g

0
25
50
75

100

Su
cc

ess
 R

ate
 (%

) 

10

80
90 90

100

30

100

Random
CEM RCE

CEM+Safet
y

SLGP

MPC Oracl
e

SLGP lan
g

0

10

20

30

W
all

 C
on

tac
t R

ate
 (%

) 

12

26

18
21

16

5

16

Random
CEM RCE

CEM+Safet
y

SLGP

MPC Oracl
e

SLGP lan
g

0
25
50
75

100

Ro
ute

 A
cc

ura
cy

 (%
) 

11 11
0

11 11
0

100

Figure 5: Visual summary of Table 2. Left: SLGP and
SLGP

lang
achieve 100% success; all other methods fall short.

Center: MPC oracle has the lowest wall contact (4.6%) but
only 30% success; SLGP

lang
(hatched) achieves 15.8% wall

contact with 100% success. Right: Only SLGP
lang

achieves
above-chance route accuracy (100% vs. 11% chance), demon-
strating that language guidance is essential for composi-
tional task specification.

(15.8%), confirming language guidance affects which route is taken
without degrading safety.

Computational cost. SLGP adds modest overhead: ∼50ms per

CEM iteration on a single GPU (𝑁 = 200, 𝐻 = 30).

6.5 Safety-Performance Tradeoff
Figure 6 maps each method in the success-rate vs. wall-contact

plane. The methods trace a clear frontier: CEM achieves 80% suc-

cess at the highest wall-contact cost (26.2%); adding safety filter-

ing or uncertainty estimation improves to 90% success with lower

contact. SLGP and SLGP_lang are the only methods in the ideal

region (top-left), achieving 100% success with 15.8% wall contact.

The MPC oracle occupies the opposite extreme—safest (4.6%) but

least successful (30%)—illustrating that dynamics knowledge with-

out effective exploration is insufficient for multi-room navigation.

6.6 Selection Bias Analysis
Table 1 and Figure 2 demonstrate the selection bias phenomenon

quantitatively. The planner’s trajectory optimization concentrates

accepted state-action pairs in low-loss regions of the latent space,

shifting the distribution away from the random policy used for
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Figure 6: Safety–performance tradeoff across all methods.
Each point plots a method’s success rate against its wall-
contact rate; the ideal region (top-left, shaded) represents
high successwith lowwall contact. SLGP

lang
(star) is the only

method in this region, achieving 100% success with 15.8%
wall contact. CEM reaches goals (80% success) but at the
highest safety cost (26.2%). MPC oracle is safest (4.6% wall
contact) but achieves only 30% success due to myopic plan-
ning with known dynamics.

standard calibration. FSR estimated on randompolicy data is 1.12%,

while FSR on planner-induced data is 0.50%—a 2.2× discrepancy.

The directionmatters: random calibration overestimates FSR, pro-
ducing overly conservative thresholds that reject safe trajectories

unnecessarily and degrade goal-reaching performance without a

corresponding safety benefit.

The 2.2× factor is likely a lower bound on the selection bias

magnitude. ColorDoor has a low-dimensional latent space (𝑑 =

2) and simple safety constraints, which limit distributional diver-

gence. In higher-dimensional environments—multi-joint manipu-

lation or autonomous driving—the planner would concentrate in a

much smaller region of feasible space, amplifying the distribution

shift. Our protocol (Definition 5.4) calibrates directly on planner-

generated data, ensuring valid FSR guarantees regardless of how

concentrated the planner’s distribution becomes.

World model error analysis. From held-out validation, the

world model achieves 1-step MSE of 0.00418 (𝜀wm ≈ 0.065). Ap-

plying Theorem 5.5 with 𝐻 = 30, 𝛽 = 0.005, 𝐿𝑐 ≈ 1: 𝑃 [unsafe] ≤
30×0.005+30×1.0×0.065 = 0.15+1.95 = 2.10. The bound exceeds

1 due to conservatism in the union bound (independent per-step

violations), the global Lipschitz estimate, and worst-case 𝜀wm. The

observed 15.8% wall-contact rate is far below this vacuous bound.

Tightening this bound via local Lipschitz analysis or martingale-

based arguments is an important future direction.

6.7 Ablation Studies
Constraintweight 𝑐𝑤 : The interaction is non-monotonic: at 𝑐𝑤 =

3.0, the safety penalty overwhelms goal pursuit, causing the agent

to stall near walls and paradoxically increase violations (42.6% vs.

15.3% at 𝑐𝑤 = 1.0). The mechanism is that an over-penalized plan-

ner avoids committing to trajectories through narrow passages,

hovering indecisively near walls. At higher values (𝑐𝑤 = 5.0, 10.0),
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Table 3: Ablation study on ColorDoor (10 episodes per vari-
ant, single seed). Goal distances are higher than in Table 2
because the ablation uses a simplified evaluation protocol
that varies one hyperparameter at a time from a differ-
ent baseline configuration; Table 2 reports the fully tuned
pipeline. Safe Mass reports the minimum safe mass across
CEM iterations: 𝛼 = 0 collapses to 0, while 𝛼 = 0.2 stays above
the 𝛼𝑝min = 0.06 bound.

Variant Goal↓ Viol.↓ Route↑ Safe Mass

Constraint weight 𝑐𝑤 (safety penalty strength):
𝑐𝑤 = 0 (no safety) 3.33 52.8% 11% —

𝑐𝑤 = 1.0 (ours) 3.21 15.3% 11% —

𝑐𝑤 = 3.0 (original) 3.47 42.6% 11% —

Language weight 𝜆ℓ (route guidance strength):
𝜆ℓ = 0 (no language) 5.55 43.5% 11% —

𝜆ℓ = 0.5 5.10 38.2% 0% —

𝜆ℓ = 5.0 (ours) 4.10 12.1% 100% —

Planning horizon 𝐻 :
𝐻 = 10 4.50 35.0% 0% —

𝐻 = 30 (ours) 4.10 12.1% 100% —

Mixture coefficient 𝛼 (safe mass preservation):
𝛼 = 0.0 (no mixture) 3.33 52.8% — 0%

𝛼 = 0.2 (ours) 5.55 43.5% — ≥6%

violations decrease again (see Appendix F), indicating the non-

monotonicity is localized. The optimal 𝑐𝑤 = 1.0 provides mean-

ingful safety gradient without overwhelming goal pursuit.

Languageweight 𝜆ℓ :At 𝜆ℓ = 0.5, the goal’s quadratic𝑥-component

overwhelms the language signal (0% route accuracy). At 𝜆ℓ = 5.0,

language replaces the goal’s lateral component via decomposed

scoring, achieving 100% route accuracy. This transition is sharp:

the language signal must dominate the goal’s lateral pull, making

𝜆ℓ effectively a discrete design choice.

Horizon𝐻 : Short horizons (𝐻 = 10) fail to produce enough po-

sitional spread for the language aligner to discriminate routes—the

trajectory does not extend far enough to cross both walls. 𝐻 = 30

provides sufficient spread for the wall-crossing signature to distin-

guish all 9 routes.

Mixture coefficient 𝛼 : While 𝛼 = 0.0 achieves lower goal dis-

tance in the short term, safe mass collapses to zero by iteration

3 (Figure 3), meaning the planner cannot recover from unsafe re-

gions. 𝛼 = 0.2 trades marginal goal distance for a provable safety

floor: safemass remains above𝛼𝑝min = 0.06 across all 50 iterations.

7 Discussion
The 2.2× FSR discrepancy (Table 1) confirms that planner-induced

selection invalidates standard safety calibration—a principle well-

studied in supervised learning [17] but not previously identified

for safety-critical planning. Our solution—calibrating on planner-

generated data—is simple but critical: the calibration distribution

mustmatch deployment. A practitioner calibrating on randomdata

would either set 𝜏 too conservatively—rejecting safe trajectories
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Figure 7: Ablation heatmap showing the interaction be-
tween constraint weight (𝑐𝑤 ) and language weight (𝜆ℓ ). Left:
Route accuracy is 100% only at 𝑐𝑤=1.0, 𝜆ℓ=5.0 (dashed box);
all other combinations fail. Right: Violation rate is non-
monotonic in 𝑐𝑤—over-aggressive safety (𝑐𝑤=3.0) paradoxi-
cally increases violations to 42.6% because the planner stalls
near walls rather than navigating through them. The opti-
mal 𝑐𝑤=1.0 achieves the lowest violations (12–15%).

and degrading performance—or believe they have a tighter safety

bound than actually holds.

SLGP is the first framework combining language conditioning,

safety guarantees, and latent action planning—three capabilities

that prior work addresses only in isolation. The mixture CEM up-

date prevents distribution collapse (Theorem 5.2), and our trajec-

tory safety bounds (Theorem 5.5) account for both selection bias

and world model prediction error, giving practitioners a principled

criterion for when their world model is accurate enough for mean-

ingful guarantees. The phased data pipeline (collect→ train WM

→ train CLF→ calibrate 𝜏 → evaluate→ DAgger) derives 𝜏 from

the desired safety level 𝛿 and measured world model error (Corol-

lary 5.6), making calibration reproducible across environments.

Limitations. All experiments use the ColorDoor variant of Point-

Maze with low-dimensional state (𝑑𝑠 = 4) and action (𝑑 = 2)

spaces. Generalization to high-dimensional visual observations, con-

tinuous safety constraints, or multi-agent settings remains to be

demonstrated. Theorem 5.2 guarantees convergence to a local limit,

not the global optimum. The union bound in Theorem 5.5 is con-

servative (yielding a vacuous bound of 2.10); tighter bounds re-

quire local Lipschitz analysis or martingale-based arguments. Re-

sults are single-seed (10 episodes per method); standard deviations

across seeds are not provided. World model errors can cause safety

classifier predictions to diverge from true outcomes; periodic recal-

ibration is recommended for non-stationary environments.

Reproducibility. Code and pre-trained models will be released

upon acceptance. The implementation uses per-phase checkpoints

enabling independent reproduction; all hyperparameters are inAp-

pendix D. Broader impact discussion is in Appendix A.

8 Conclusion
Wepresented SLGP, a data-driven framework for language-conditioned

planning in latent action spaces with probabilistic safety guaran-

tees. SLGP combines prototypical language–latent alignment, data-

driven safety calibration that accounts for selection bias and world

7
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model error, and safety-filtered CEMwith provable safemass preser-

vation. Our theoretical analysis establishes two results: the mix-

ture CEM update maintains safe sampling mass with local conver-

gence guarantees (Theorem 5.2), and trajectory safety bounds ex-

plicitly incorporate both planner-induced selection bias and world

model prediction error (Theorem 5.5). Experiments on composi-

tional ColorDoor navigation demonstrate 100% route accuracy across

all 9 compositional routes with 15.8% wall-contact rate, while our

selection bias analysis reveals a 2.2× FSR discrepancy that invali-

dates standard random-data calibration.

More broadly, thiswork demonstrates that latent action spaces—

despite lacking semantic grounding—can support both natural lan-

guage task specification and quantifiable safety constraints. As la-

tent action world models scale to richer domains through internet

video pretraining, the need for principled safety calibration will

only grow. The selection bias insight generalizes beyond our spe-

cific setting: any system that optimizes trajectories before evaluat-

ing safety must account for the planner’s distribution shift during

calibration.

Ethics Statement
The safety guarantees provided by SLGP are probabilistic, not ab-

solute: the theoretical bounds (Theorem 5.5) depend on calibration

assumptions that may not hold under distribution shift, and viola-

tions can occur in practice. Accordingly, SLGP should not serve as

the sole safety mechanism in real-world deployments; hardware

interlocks, human oversight, and redundant safety layers remain

essential. We note that latent action models trained on internet-

scale video could, in principle, be applied to surveillance or mil-

itary planning contexts. We encourage the research community

to develop governance frameworks for latent action models that

restrict unsafe applications. Our experiments use a simulated grid-

world environmentwith no human subjects, personal data, or dual-

use concerns specific to this work.

AI Use Disclosure
In accordance with ACM policy, we disclose that AI-assisted tools

were used for code development and manuscript preparation. All

scientific claims, experimental results, and theoretical analysiswere

verified by the authors.
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A Limitations, Reproducibility, and Broader
Impact

Limitations. All experiments use the ColorDoor variant of Point-

Maze with low-dimensional state (𝑑𝑠 = 4) and action (𝑑 = 2)

spaces. Generalization to high-dimensional visual observations, con-

tinuous safety constraints, or multi-agent settings remains to be

demonstrated. Theorem 5.2 guarantees convergence to a limit, not

the global optimum. The union bound in Theorem 5.5 is conser-

vative (yielding a vacuous bound of 2.10); tighter bounds require

local Lipschitz analysis. Results are single-seed (10 episodes per

method); standard deviations across seeds are not provided. World

model errors can cause safety classifier predictions to diverge from

true outcomes; periodic recalibration is recommended for non-stationary

environments.

Reproducibility. Code and pre-trained models will be released

upon acceptance. The implementation uses per-phase checkpoints

enabling independent reproduction. All hyperparameters are in

Appendix D. Experiments use seed 42 with 10 episodes per method

(27 for SLGP_lang).

Broader Impact. This work improves safety of autonomous

systems using learned world models. Our safety guarantees are

probabilistic, not absolute—violations occur under distribution shift.

Safety-critical deployments require additional safeguards (hard-

ware interlocks, human oversight). The selection bias insight has

broad implications: any deployed planning system validated on

random test data may have weaker safety properties than believed.

B Additional Theoretical Remarks
Moment-MatchingApproximation. In practice, themixture𝑞𝑘+1 =

(1−𝛼)𝑞𝑘+1+𝛼𝑞0 is approximated by a single Gaussian via moment

matching. The bound 𝛼𝑝min remains valid because the moment-

matched Gaussian has larger variance than 𝑞𝑘+1 alone (the mix-

ture’s covariance includes an inter-component spread term), en-

suring at least as much mass onZ𝑐
safe

as the 𝛼𝑞0 component con-

tributes.

Practical Enforcement of A4. Our implementation enforces

Σ𝑘 ⪰ 𝜎2

min
𝐼 via std.clamp(min=0.01) at each CEM iteration.

Without this, 𝑞𝑘 collapses to a point mass.

C Sample Complexity Analysis
Theorem C.1 (Sample Complexity for Safe Trajectory Gen-

eration). To obtain𝐾 safe trajectories with probability ≥ 1−𝛿 from
a distribution with safe mass 𝑝safe, the required number of samples
satisfies:

𝑁 ≥ 𝐾

𝑝safe
+
√√

2𝐾 log(1/𝛿)
𝑝2

safe

(9)

Proof. Let 𝑋𝑖 ∼ Bernoulli(𝑝
safe
) indicate whether sample 𝑖 is

safe. The number of safe samples 𝑆𝑁 =
∑𝑁
𝑖=1

𝑋𝑖 has mean 𝑁𝑝
safe

.

We require 𝑃 [𝑆𝑁 ≥ 𝐾] ≥ 1 − 𝛿 .
By the Chernoff bound: 𝑃 [𝑆𝑁 < 𝐾] ≤ exp

(
− (𝑁𝑝safe−𝐾 )

2

2𝑁𝑝safe

)
. Set-

ting this ≤ 𝛿 and solving for 𝑁 yields the stated bound. □

Table 4 validates this bound empirically across different safe

mass levels using 50 independent trials per configuration.

Table 4: Sample complexity: theoretical bound vs empirical
requirement for 𝐾 = 10 safe trajectories, 𝛿 = 0.05. Empirical
values are mean ± std over 50 trials.

𝑝
safe

Theoretical 𝑁 Empirical 𝑁 Std

0.05 234.6 202.8 56.0

0.10 124.5 99.7 27.7

0.20 67.3 49.9 13.9

0.30 47.5 32.2 7.8

0.50 30.9 20.3 4.5

The theoretical bound is consistently conservative (by 15–40%),

as expected from a Chernoff-based analysis. The gap decreases

with larger 𝑝
safe

, confirming the bound is tightest when safe mass

is abundant.

D Hyperparameters
Table 5 lists all hyperparameters used in the ColorDoor experi-

ments.

Table 5: Full hyperparameters for ColorDoor experiments.

Component Parameter Value

World Model

Hidden dim 128

KL weight 0.001

Epochs 100

Learning rate 0.001

Batch size 256

Patience (early stop) 20

Safety CLF

Hidden dim 128

Epochs 50

Learning rate 0.001

Batch size 256

Patience (early stop) 15

Planner (CEM)

Horizon 𝐻 30

Samples 𝑁 200

Elites 𝐾 20

Iterations 5

Mixture 𝛼 0.2

Min variance 0.01

Constraint weight 1.0

Language

Language weight 𝜆ℓ 5.0

Language model all-MiniLM-L6-v2

Calibration

𝜏 0.407

Target per-step FSR 0.005

Calibration samples 40,000

Evaluation

Episodes per method 10

Max steps per episode 800
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E World Model Quality
The VAE world model achieves best validation loss of 0.00686 af-

ter early stopping. One-step prediction MSE on held-out data is

0.00418 (RMSE ≈ 0.065 in state-space units, where the grid spans

[0, 19]).

This small prediction error (< 0.35% of the grid size) confirms

assumption quality for Theorem 5.5: the world model error term

𝜀wm ≈ 0.065 contributes a correction of 𝐻 · 𝐿𝑐 · 𝜀wm to the safety

bound. For safety-critical applications,multi-step rollout error should

also be evaluated, as compounding errors over horizon𝐻 = 30may

exceed the single-step bound.

F Extended Ablation Data
Table 6 shows the full constraint weight × safety threshold sweep

(9 configurations, 6 episodes each) from the trajectory smoothness

experiment.

Table 6: Extended ablation: constraint weight (𝑐𝑤 ) × safety
threshold (𝜏) interaction. Wall hit rate, route accuracy, and
goal distance across 9 configurations (6 episodes each, 𝜆ℓ =

5.0, single seed). Reproducible via the evaluation pipeline
with modified hyperparameters.

𝑐𝑤 𝜏 Wall Hit Route Acc. Goal Dist.

0.0 0.0 53.7% 0% 14.4

1.0 0.0 53.1% 0% 15.4

1.0 0.3 20.0% 0% 20.6

3.0 0.0 24.9% 33% 11.9

3.0 0.3 25.4% 0% 22.3

5.0 0.0 11.8% 33% 10.7

5.0 0.3 23.2% 0% 20.1

10.0 0.0 12.8% 33% 9.6

10.0 0.3 8.2% 33% 13.5

Key observations: (1) Adding a safety threshold (𝜏 = 0.3) con-

sistently reduces wall hit rates but increases goal distance, con-

firming the safety-performance tradeoff. (2) The interaction is non-

trivial: at 𝑐𝑤 = 3.0, adding 𝜏 = 0.3 reduces route accuracy from 33%

to 0%, because the combined constraint is too aggressive, causing

the planner to avoid all doors. (3) The best overall configuration

(𝑐𝑤 = 10.0, 𝜏 = 0.3) achieves the lowest wall hit rate (8.2%) while

maintaining route accuracy — but at the cost of increased goal dis-

tance (13.5 vs 9.6).
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