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Abstract space has no semantic grounding. Recent vision-language-action 05
Latent action world models learn reusable action representations models [37, 38, 40] ground language to actions but require labeled e
from video without explicit action labels, but lack mechanisms for action demonstrations. Second, safety guarantees are absent: plan- ¢/
language-based task specification and safety enforcement during ning algorithms may generate latent action sequences that, when o8
planning. We introduce Safe Language-Guided Planning (SLGP), decoded and executed, produce dangerous or physically infeasible 69
a data-driven framework for language-conditioned trajectory op- behaviors. In safety-critical domains—autonomous navigation in 70
timization in latent action spaces with probabilistic safety guar- warehouses, assistive robotics in hospitals, or manipulation near 7
antees. Our key insight is that selection bias in safety calibration— humans—deploying a planner without quantifiable safety bounds 7
the planner’s trajectory selection shifts the distribution of accepted is unacceptable. While safe reinforcement learning [1, 2] provides 7
steps—requires calibration on planner-generated data rather than constraint satisfaction guarantees, these methods assume known 74
random samples. SLGP combines three components: (1) contrastive action spaces and explicit constraint functions, neither of which 7
language-latent alignment via prototypical networks for ground- holds for latent action models. 76
ing compositional natural language instructions, (2) a safety clas- A subtler challenge arises during safety evaluation itself. Stan- 77
sifier with data-driven threshold calibration that controls false- dard practice calibrates safety classifiers on randomly sampled state- 7
safe rates on planner-induced data, and (3) a safety-filtered cross- action pairs, but a planner selects trajectories that optimize an objective—7°
entropy method with mixture updates that provably preserves safe shifting the distribution of accepted steps away from the calibra- 80
sampling mass. We provide two main theoretical results: safe mass tion data. This selection bias means that safety rates measured .
preservation with local convergence guarantees (Theorem 1), and on random data do not transfer to planner-deployed systems, po- *
trajectory safety bounds that explicitly account for both selection tentially invalidating guarantees when they matter most. .
bias and world model prediction error (Theorem 2). Experiments Prior work addresses these challenges in isolation—language- o
on a compositional 9-route navigation task (ColorDoor) demon- conditioned policies require labeled demonstrations [36, 41], safe 85
strate 100% goal success and 100% route accuracy across all 9 routes RL assumes known action spaces [10, 12], and latent safety meth- .
(vs. 11% chance) with language guidance, while maintaining low ods lack language guidance [5, 9]—but no existing method com- &
wall-contact rates (15.8%). Our selection bias analysis reveals a bines all three. *
2.2Xx discrepancy between random and planner-calibrated false- We present Safe Language-Guided Planning (SLGP), a data- *
safe rates, confirming that standard calibration on random data driven framework that addresses these challenges jointly. Our key %

produces invalid safety guarantees for planner-deployed systems.

CCS Concepts

« Computing methodologies — Planning under uncertainty;
Neural networks; Robotic planning.

Keywords

latent action spaces, safe planning, language conditioning, data-
driven calibration, world models, selection bias

1 Introduction

Latent action world models have emerged as a promising para-
digm for learning dynamics from unlabeled video [21, 23, 24]. By
jointly learning an inverse dynamics model that infers latent ac-
tions from observed state transitions and a forward model condi-
tioned on these actions, such systems can plan without requiring
action labels during training [22, 27]. This enables leveraging the
vast corpus of internet video for robot learning—a capability in-
accessible to traditional model-based methods that assume known
action spaces [25].

However, deploying latent action world models for real-world
autonomous systems presents two fundamental challenges. First,
task specification remains difficult: users cannot directly com-
mand the system in natural language because the latent action

insight is that the geometric structure of learned latent action spaces— 9!
shaped by VAE [43] or VQ-VAE [44] regularization—enables ef- 92

ficient safety verification through a lightweight classifier on la- %
tent representations, provided that the classifier is calibrated on 4
planner-generated data rather than random samples. 95
96

97

Contributions. o8

99
(1) Selection Bias in Safety Calibration (key insight): We 100

identify that planner-induced distribution shift invalidates 101
standard safety calibration, and propose a data-driven cali- 102
bration pipeline on planner-generated data with safety bounds 103
incorporating world model prediction error (Theorem 5.5). 104
(2) Safety-Preserving CEM: A mixture update for the cross- 105
entropy method that provably maintains safe sampling mass 106
with local convergence guarantees (Theorem 5.2). 107
(3) Language-Latent Alignment: A prototypical network 108
approach mapping compositional natural language to la- 109
tent trajectory signatures, enabling 9-route compositional 110
task specification without action labels. 11
(4) Comprehensive Evaluation: Experiments on composi- 112
tional ColorDoor navigation demonstrating 100% route ac- 13
curacy across all 9 routes, with ablation studies validating 114
both safety calibration and language guidance. s

116
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2 Related Work

Latent Action World Models. World models [23-25] learn dy-
namics for model-based control. Recent latent action methods—
UniVLA [26], LAPA [27], ThinkAct [28], CLAP [29]—learn action
representations from unlabeled video, identifying planning directly
in latent space as an open problem. None address safety constraints
during latent-space planning; our work fills this gap.

Language-Conditioned Planning. Language grounding approaches
include end-to-end policies [36, 37], LLM-based planning [35, 41],
and VLA models [38, 40]. These typically require action-labeled
demonstrations and lack safety mechanisms. Our approach maps
language to latent action distributions with calibrated safety bounds.

Safe Reinforcement Learning. Constrained MDPs [2] underlie safe
RL methods including CPO [1], FOCOPS [13], Recovery RL [11],
and Constrained CEM [12]; Robust CEM [4] handles model un-
certainty. Most relevant, SafeDreamer [6] integrates Lagrangian
safety into DreamerV3 but lacks language conditioning. Text-to-
Trajectory [7] grounds language in safe navigation but operates in
the original action space. SPOWL [8] and C-LAP [9] address safe
latent policies without language. Our work is the first to combine
all three: language conditioning, safety guarantees, and latent ac-
tion planning.

Selective Prediction and Calibration. Our safety bounds build on
selective prediction [17] and conformal inference [14, 16]. Unlike
standard calibration [15], selective prediction controls error rates
among accepted predictions—crucial when the planner’s selection
induces distribution shift.

3 Preliminaries
3.1 Latent Action World Models

A latent action world model [21, 27] consists of:
¢ An encoder g4 (z¢|ss, st+1) that infers latent actions z; €
Z < R? from state transitions.
o A decoder py(ss+1lst, z¢) that predicts next states.

The encoder is trained as a VAE [43] with KL regularization to
shape the latent space. After training, the forward model enables
planning: given initial state sy and goal s*, find latent action se-
quence z;. that achieves the goal.

3.2 Problem Formulation

Definition 3.1 (Safe Language-Guided Planning). Given initial state
so, goal state s*, language instruction ¢, safety threshold 7 € (0, 1),
and world model f, find:

* . *
Z = argmin L£(z1.57;50,S , ¢ 1
;4 = argmin L(z1.H;50,8", ) (1)

subject to: Pgafe(st,2¢) > 7,V

4 Method

SLGP addresses the language specification and safety guarantee
challenges through three tightly integrated components: language-
latent alignment for grounding instructions without action labels,
a safety classifier with planner-aware threshold calibration, and
a safety-filtered CEM planner with mixture updates that preserve

Anon.

safe sampling mass. Figure 1 provides an overview of the complete
framework and its phased training pipeline.

4.1 Language-Latent Alignment

We encode instructions ¢ using a pretrained language model (Sentence-

BERT [46]) to obtain embeddings e, € RY . A learned projection
e R — R maps language embeddings to a position-signature
space R%, where each route is represented by a centroid summa-
rizing the door-crossing positions along that route:

1 = gyer) @)

The alignment is trained via prototypical contrastive learning
with L2 distance and route-level centroids. Let ¢ € R% denote the
centroid of route r, computed as the mean position signature of all
trajectories following route r. The InfoNCE loss with L2 distance
is:
ot exp(=llu, = c*lI3/7c)

Xrexp(=llpe = Il /7)
where ¢ is the centroid of the correct route for instruction ¢. This
prototypical formulation reduces the number of contrastive classes
to the number of routes (9 in ColorDoor), making alignment tractable
even with limited demonstrations.

©)

-Calign ==

4.2 Latent Safety Classifier

Given the language-aligned planner, we need a mechanism to re-
ject unsafe trajectories before execution. We train a binary safety
classifier ¢, : 8 X Z — [0,1] that operates directly on latent
state-action pairs:

Pgate(8,2) = cy(s,z) = o (MLP,([s;2])) (4)

Crucially, the classifier is trained on latent actions re-encoded
through the world model, not raw environment actions, ensuring
that its predictions are consistent with the planner’s forward roll-
outs. For the safety bounds in Section 5, we use selective prediction
with threshold calibration on planner-generated data—the key step
that addresses the selection bias identified in the introduction.

4.3 Safety-Filtered Cross-Entropy Method

We modify the Cross-Entropy Method [18] with two key changes:
(1) a configurable safety filter that integrates safety into elite se-
lection, and (2) a mixture update that preserves safe mass across
iterations.

The classifier-accepted safe set is defined as (Definition 5.3):

H
Zige = {ZI:H  min Colsezt) > T} ®)

Algorithm: SLGP

(1) Calibrate 7 on held-out data s.t. false-safe rate < §/H

(Corollary 5.6)
(2) Initialize: g9 < N (0,I) (isotropic prior)
(3) For k =0 to Kpax:

(a) Sample N trajectories from gy

(b) Scoreall samples: L; = L(z;; 80, s*, £) including safety

penalty Ag miny ¢, (s¢, Z¢)
(c) Select elites (configurable mode):
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Latent Safety Classifier

State-Action Pairs

!

SentenceBERT Contrastive Learning
P
v MLP P  hreshold " DS“f.e’,y
Prototypical Aligner Route Centroids T eeeLon
| Binary Search
Latent Target (Planner-Induced Data)
Safety-Filtered CEM
VAE World Model Score by:
D-Ctl:.l%eltl-t TSafn;)tle N (Encoder: Inverse Dynamics, Goal Distance + Language —> Best
ek agesones Decoder: Forward Dynamics) Alignment + Safety Trajectory
Mixture Update:

G = (1-0)*q_hat + a*qq

Training Pipeline
Collect Train VAE Collect
Random Data World Model Planner Data

<«— Fit New Gaussian «<—— Select Elites

Optional DAgger Loop

Calibrate
Threshold

Train Safety

Classifier — Evaluate

Figure 1: Overview of the SLGP framework. Left: Language instructions are encoded via SentenceBERT and mapped to a
position-signature space by a prototypical aligner trained with InfoNCE contrastive loss. Center: A binary MLP classifier
predicts action safety, trained on latent actions re-encoded through the world model with threshold 7 calibrated on planner-
induced data. Right: Safety-filtered CEM optimizes trajectories through the VAE world model, with a mixture update preserv-

ing safe sampling mass. Bottom: The phased training pipeline with optional DAgger refinement.

o Soft (default): rank all N by combined score, pick
top-K
e Hard: filter to Z¢ ., pick top-K by score; fall
back to top-K overall if < K pass
e Hybrid: hard filter with soft-scored fallback
(d) Fit gz, to elites (MLE for Gaussian)
(e) Mixture update: gr,; «— (1 — a)§rs1 + @qo
(4) Return trajectory with best score across all iterations

Unlike standard CEM [12], iCEM [19], or MPPI [20], our mix-
ture update (step 3e) provably maintains safe sampling mass (The-
orem 5.2). The soft mode integrates safety as a continuous penalty,
avoiding catastrophic fallback in tight feasible regions.

Objective Function. The CEM objective decomposes into goal-
reaching, language guidance, and safety:

H
L(z1.p) = _(SH,y - 32)2 - Af(sH,x - ﬂf,stage)z - As 1;1_1{1 Co (st 2r)
(6)
where sg, , is the forward-progress component, yig stage is a stage-
aware lateral target from the language projection, and the safety
term uses bottleneck (minimum) safety over the trajectory. With-
out language, the language term is replaced by —(sg  — s5)2.

5 Theoretical Analysis

We address two questions: does the safety-filtered CEM converge,
and what safety guarantees hold for accepted trajectories? Sample
complexity analysis is deferred to Appendix C.

5.1 Safe Mass Preservation and Local
Convergence

A fundamental failure mode of safety-filtered CEM is distribution
collapse: the sampling distribution loses all mass on safe trajecto-
ries. We prevent this via a mixture update.

Definition 5.1 (Safety-Preserving CEM Update). At iteration k,
update: qx,1 = (1 — @)§rs1 + @qo, Where Gy is fitted to safe elites
and « € (0,1).

THEOREM 5.2 (SAFE MASs PRESERVATION AND LocAL CONVER-
GENCE). Consider safety-filtered CEM with the mixture update. Un-
der assumptions:

(A1) Py lz € Zscafe] > Pmin > 0 (initial safe mass)

(A2) Zscafe is compact (bounded safe set)

: : c

(A3) L is continuous on Zsafe

(A4) = > (frzninlforallk (variance floor; enforced by min_variance)
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Then: (i) Safe mass is preserved: Py, ['Zscafe] > apmin for all k. (ii)
In the infinite-sample limit, the sequence of elite objective values
{L]‘zlite} converges to alocal limit L> < L*.

Proor. (i) Safe mass preservation. By the mixture update:
Pay ['Zscafe] =(1- a)quH [ gafe] +aPq, ['Zscafe] = @Pmin-

(ii) Local convergence (infinite-sample limit). Under stan-
dard regularity conditions for CEM convergence [18]: By (A2)-
(A3), £ attains its maximum on Z_ . . By (A4), each gi has full
support on any compact subset where go has positive density. The
elite threshold yx(pe) = inf{y : Py [L 2 y N 'Zscafe] > pe}
is non-decreasing because the mixture update preserves mass on
high-objective safe regions. Since yi is bounded above by L* =
maxze L, the monotone convergence theorem gives y — L% <

L.

O

Remark (Local vs Global): We claim convergence to a limit,
not necessarily £*. Global optimality requires additional assump-
tions (log-concavity of level sets [12]). The mixture update trades
convergence rate for safe mass preservation: the aqyp component
prevents collapse but introduces a persistent bias toward the prior.

Remark (Practical Implementation): In practice, (A4) is en-
forced via std.clamp(min=0.01) at each CEM iteration. The mix-
ture is approximated by a single Gaussian via moment matching;
this preserves the safe mass bound because the moment-matched
Gaussian has larger variance than g alone (see Appendix B).

5.2 Safety Guarantee via Selective Prediction

We now bound the safety level of accepted trajectories via selective
prediction, accounting for both planner-induced distribution shift
and world model prediction error.

Definition 5.3 (Selective Safety Acceptance). Given threshold ,
accept trajectory zy.py iff minﬁ1 cw (8¢, 2¢) > 7, where §; are states
predicted by the world model.

Definition 5.4 (Planner-Induced Calibration). Let Dpja, denote
the distribution of accepted state-action pairs (s, z;) generated by
the planner with threshold 7. The planner-calibrated FSR is:

FSRplan(f) = P(s,z)~Z)p13n [y=0]cu(s2) 27] (7)

THEOREM 5.5 (TRAJECTORY SAFETY UNDER MODEL ERROR). Let

FSRp1an(t) < B, verified on calibration data from the planner pipeline.

Let ey, be the world model’s per-step prediction error bound on the
calibration domain, and L. the Lipschitz constant of c¢,, w.r.t. state.
Then for any accepted trajectory:

P[trajectory unsafe] <H-f+H - Lc - ewm (8)

Proor. Let §; be predicted states and s; actual states. For ac-
cepted steps under predicted dynamics: P[U; | A $:] < f. The

classifier error from state mismatch is bounded: |c,, (s, zr)—cw (51, 2¢)| <

Leéwm- By union bound: P[3t : Uy | Vi : At] < H(B + Leewm). O

COROLLARY 5.6 (PRACTICAL THRESHOLD SELECTION). To achieve
trajectory safety > 1—6 accounting for model error: select T such that
FSRyian(7) < (8 = HLeewm)/H. If HLcewm 2 O, the world model
must be improved first.

Anon.

COROLLARY 5.7 (FINITE-SAMPLE CALIBRATION). With n calibra-
tion samples, k false-safe events among m accepted: FSRpjqn(7) <
Bl—y = Betal__ly(k+l, m—k) (Clopper-Pearson). The t;:ajectory safety
guarantee holds with confidence 1—y: P unsafe] < Hﬁl_y+HLcswm.

Remark: If FSR is estimated on random (s, z) pairs but deployed
on planner-selected pairs, the guarantee may not hold—our proto-
col explicitly calibrates on planner-generated data. The ewm term
can be estimated from held-out multi-step rollout MSE.

6 Experiments

We empirically validate both theoretical claims and evaluate SLGP
against five baselines on the ColorDoor benchmark, a composi-
tional navigation task that requires language-guided route selec-
tion through colored doors with wall-contact safety constraints.

6.1 Setup

Environment: ColorDoor (PointMaze variant): 19x19 grid-of-
rooms navigation (ds = 4, d = 2, H = 30) with 9 compositional
routes through colored doors (green, blue, red at each of two walls).
Safety = wall proximity. Language instructions specify which col-
ored doors to traverse (e.g., “go through the green door then the
blue door”).

Baselines: CEM (standard cross-entropy method [18]), CEM +
Safety (CEM with calibrated safety penalty), RCE (Robust CEM
with MC dropout uncertainty), MPC oracle (known dynamics), SLGP

(safety-preserving CEM with mixture update), SLGP_lang (full method

with language guidance).

Language instructions: 9 compositional instructions specify-
ing route through two walls (e.g., “go through the green door then
the blue door”). Language-latent alignment trained via prototypi-
cal networks with L2 similarity (InfoNCE loss).

6.2 Implementation Details

World Model Architecture: We use a VAE-based [43] latent ac-
tion world model with encoder/decoder MLPs (3 layers, 128 hidden
units, LayerNorm, ReLU). The inverse dynamics model g (zs¢, s¢+1)
outputs mean and log-variance for the reparameterization trick.
KL weight f = 0.001, trained for 100 epochs with early stopping
(patience 20).

Training Data: We collect 1M state transitions from a random
policy on ColorDoor. No action labels are used; latent actions are
inferred via the inverse dynamics model.

Safety Labels: Generated from simulator ground truth: binary
wall-collision labels. Safety classifier (128 hidden, 50 epochs) is
trained on latent actions re-encoded via the world model’s encoder,
not raw environment actions.

Hyperparameters: CEM uses N = 200 samples, K = 20 elites,
5 iterations. Mixture a = 0.2, variance floor opj, = 0.01. Safety
threshold 7 = 0.407 is calibrated on planner-induced data (N =
40,000 samples) to achieve FSRpap, < 0.005 per step. Results evalu-
ated over 10 episodes per method. Full hyperparameter details are
given in Appendix D.
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7=0.407, acceptance = 77%
1.6 1

144

1.2 4 1.12%

False-Safe Rate (%)

FSRrandom

FSRpian

Figure 2: Selection bias in safety calibration (r = 0.407, N =
40,000 samples). The false-safe rate estimated on random
policy data (1.12%) is 2.2X higher than on planner-induced
data (0.50%), confirming that the planner’s trajectory se-
lection shifts the accepted-step distribution. Calibrating on
random data produces overly conservative thresholds that
reject safe trajectories; our protocol calibrates directly on
planner-generated data to ensure tight guarantees.

Table 1: Selection bias in safety calibration (ColorDoor, 7 =
0.407). FSR estimated on random data overestimates the ac-
tual false-safe rate on planner-induced data, confirming the
need for planner-aware calibration (N = 40,000 samples).

Data Source FSR  Acceptance Rate

1.12% -
77.2%

Random policy
Planner-induced 0.50%

6.3 Validating Theoretical Claims

Theorem 1 (Safe Mass Preservation): Figure 3 validates this di-
rectly. Without the mixture update (« = 0), safe mass collapses to
near-zero by iteration 3. With ¢ = 0.2, safe mass stabilizes in the
7-9% range, above the theoretical bound appiy = 0.06.

Theorem 2 (FSR Transfer): Table 1 and Figure 2 show FSRandom =
1.12% vs. FSRpjan = 0.50%—a 2.2X discrepancy confirming planner-
induced distribution shift.

6.4 Main Results: ColorDoor Navigation

ColorDoor is a 19x19 grid-of-rooms environment with 9 compo-
sitional routes through colored doors (green, blue, red at each of
two walls). We evaluate goal-reaching, safety, and route accuracy.

Table 2 shows the main comparison (single seed, n = 10 episodes
per baseline method; n = 27 for SLGP_lang). We report wall-contact
rate (fraction of steps in wall-adjacent cells) as the safety metric.
Key findings:

Goal-reaching and safety. SLGP achieves 100% success with
15.8% wall contact, the best combined performance. Adding safety
filtering reduces wall contact from 26.2% (CEM) to 21.1% (CEM+Safety)
while improving success from 80% to 90%, confirming safety penal-
ties provide useful gradient information. RCE is competitive (0.59
goal distance, 18.3% wall contact) but lacks language conditioning
and provable safe mass guarantees.

Conference’17, July 2017, Washington, DC, USA

0.35
¥— Standard CEM (a=0)
0.30 A =8 SLGP (¢=0.2)
025 1 —==' Theorem 1 bound (apmin =0.06)
—~
&
g 0.20 A
N
w ]
N 0.15
S
0.10 A
0.05 A Collapse
Below safety guarantee X
0.00 AT g/l oy e
0 10 20 30 40 50
CEM Iteration

Figure 3: Empirical validation of Theorem 1 (safe mass
preservation). Standard CEM without mixture update (red,
a=0) collapses to near-zero safe mass by iteration 3 and re-
mains there, leaving the planner unable to recover safe tra-
jectories. SLGP’s mixture update (green, o=0.2) maintains
safe mass above the theoretical lower bound apy,i, = 0.06
(dashed line) across all 50 iterations, stabilizing in the 7-9%
range. Data from 200-sample CEM runs on ColorDoor (d=2,
H=10).

Table 2: ColorDoor results. Goal Dist. is Euclidean distance
to goal at termination. Wall Contact is fraction of steps
where the agent occupies a wall-adjacent cell (position-only
safety metric matching the paper’s wall-proximity defini-
tion). Route Acc. measures correct door traversal for the
instructed route (1/9 = 11% is chance). Baselines evaluated
over 10 random-goal episodes; SLGP_lang evaluated over 27
route-specific episodes (3 per route X 9 routes). Best in bold.

Method SuccessT Goal| Wall] Route]
Random 10% 10.58 12.5% 11%
CEM 80% 1.71 26.2% 11%
RCE 90% 0.59 18.3% —
CEM+Safety 90% 0.62 21.1% 11%
SLGP 100% 0.48 15.8% 11%
MPC oracle 30% 6.40 4.6% —
SLGP_lang® 100% 048 158%  100%

fEvaluated on route-specific episodes with language instructions.

MPC oracle paradox. The MPC oracle plans with known ground-
truth dynamics yet achieves only 30% success despite having the
lowest wall contact (4.6%). This reveals a fundamental advantage of
latent-space planning: CEM’s stochastic sampling explores broadly,
whereas MPC greedily optimizes short-horizon steps and gets trapped
in local minima within the multi-room maze.

Route accuracy. SLGP_lang achieves 100% route accuracy
across all 9 compositional routes (3 episodes X 9 routes = 27 episodes),
while all non-language methods achieve only chance level (11%).
This is enabled by prototypical network alignment with decom-
posed CEM scoring where language replaces the goal’s lateral com-
ponent. SLGP and SLGP_lang share identical wall-contact rates
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CEM (11%) SLGP (11%) SLGPyg (100%)

Actual Route Actual Route

Figure 4: Route confusion matrices for 9 compositional
routes (3 episodes each). Left: CEM ignores instructions en-
tirely, always selecting the same route (column 6). Cen-
ter: SLGP without language distributes across two fixed
routes regardless of instruction. Right: SLGP,,, achieves
a perfect diagonal—every instruction produces the correct
route, demonstrating that the prototypical language-latent
alignment successfully resolves all 9 compositional routes.
SLGP),n, confusion matrix reflects the 27-episode evalua-
tion (3 per route); CEM and SLGP baseline patterns are il-
lustrative.

1o

Success Rate (%) T
‘Wall Contact Rate (%)

S D S S F e
& & e
« X &

« «

Figure 5: Visual summary of Table 2. Left: SLGP and
SLGPy,y,; achieve 100% success; all other methods fall short.
Center: MPC oracle has the lowest wall contact (4.6%) but
only 30% success; SLGP,,; (hatched) achieves 15.8% wall
contact with 100% success. Right: Only SLGPy,,, achieves
above-chance route accuracy (100% vs. 11% chance), demon-
strating that language guidance is essential for composi-
tional task specification.

(15.8%), confirming language guidance affects which route is taken
without degrading safety.

Computational cost. SLGP adds modest overhead: ~50ms per
CEM iteration on a single GPU (N = 200, H = 30).

6.5 Safety-Performance Tradeoff

Figure 6 maps each method in the success-rate vs. wall-contact
plane. The methods trace a clear frontier: CEM achieves 80% suc-
cess at the highest wall-contact cost (26.2%); adding safety filter-
ing or uncertainty estimation improves to 90% success with lower
contact. SLGP and SLGP_lang are the only methods in the ideal
region (top-left), achieving 100% success with 15.8% wall contact.
The MPC oracle occupies the opposite extreme—safest (4.6%) but
least successful (30%)—illustrating that dynamics knowledge with-
out effective exploration is insufficient for multi-room navigation.

6.6 Selection Bias Analysis

Table 1 and Figure 2 demonstrate the selection bias phenomenon
quantitatively. The planner’s trajectory optimization concentrates
accepted state-action pairs in low-loss regions of the latent space,
shifting the distribution away from the random policy used for
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Figure 6: Safety—performance tradeoff across all methods.
Each point plots a method’s success rate against its wall-
contact rate; the ideal region (top-left, shaded) represents
high success with low wall contact. SLGPy, (star) is the only
method in this region, achieving 100% success with 15.8%
wall contact. CEM reaches goals (80% success) but at the
highest safety cost (26.2%). MPC oracle is safest (4.6% wall
contact) but achieves only 30% success due to myopic plan-
ning with known dynamics.

standard calibration. FSR estimated on random policy data is 1.12%,
while FSR on planner-induced data is 0.50%—a 2.2X discrepancy.

The direction matters: random calibration overestimates FSR, pro-
ducing overly conservative thresholds that reject safe trajectories
unnecessarily and degrade goal-reaching performance without a
corresponding safety benefit.

The 2.2X factor is likely a lower bound on the selection bias
magnitude. ColorDoor has a low-dimensional latent space (d =
2) and simple safety constraints, which limit distributional diver-
gence. In higher-dimensional environments—multi-joint manipu-
lation or autonomous driving—the planner would concentrate in a
much smaller region of feasible space, amplifying the distribution
shift. Our protocol (Definition 5.4) calibrates directly on planner-
generated data, ensuring valid FSR guarantees regardless of how
concentrated the planner’s distribution becomes.

World model error analysis. From held-out validation, the
world model achieves 1-step MSE of 0.00418 (¢ym ~ 0.065). Ap-
plying Theorem 5.5 with H = 30, f = 0.005, L, ~ 1: P[unsafe] <
30%0.005+30X1.0%0.065 = 0.15+1.95 = 2.10. The bound exceeds
1 due to conservatism in the union bound (independent per-step
violations), the global Lipschitz estimate, and worst-case ewm. The
observed 15.8% wall-contact rate is far below this vacuous bound.
Tightening this bound via local Lipschitz analysis or martingale-
based arguments is an important future direction.

6.7 Ablation Studies

Constraint weight c,,: The interaction is non-monotonic: at ¢,y =
3.0, the safety penalty overwhelms goal pursuit, causing the agent
to stall near walls and paradoxically increase violations (42.6% vs.
15.3% at ¢4y = 1.0). The mechanism is that an over-penalized plan-
ner avoids committing to trajectories through narrow passages,
hovering indecisively near walls. At higher values (c,, = 5.0, 10.0),
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Table 3: Ablation study on ColorDoor (10 episodes per vari-
ant, single seed). Goal distances are higher than in Table 2
because the ablation uses a simplified evaluation protocol
that varies one hyperparameter at a time from a differ-
ent baseline configuration; Table 2 reports the fully tuned
pipeline. Safe Mass reports the minimum safe mass across
CEM iterations: o = 0 collapses to 0, while @ = 0.2 stays above
the appin = 0.06 bound.

Variant Goal| Viol.] Routel Safe Mass

Constraint weight c., (safety penalty strength):

cw = 0 (no safety) 3.33 52.8% 11% —
cy = 1.0 (ours) 3.21 15.3% 11% -
¢ = 3.0 (original) 3.47 42.6% 11% —
Language weight Ap (route guidance strength):

Ae = 0 (no language) 5.55  43.5% 11% -
Ae =05 5.10 38.2% 0% —
A¢ = 5.0 (ours) 4.10 12.1% 100% —
Planning horizon H:

H=10 4.50 35.0% 0% —
H =30 (ours) 4.10 12.1% 100% —
Mixture coefficient a (safe mass preservation):

a = 0.0 (no mixture)  3.33 52.8% — 0%
a = 0.2 (ours) 5.55 43.5% — >6%

violations decrease again (see Appendix F), indicating the non-
monotonicity is localized. The optimal ¢,, = 1.0 provides mean-
ingful safety gradient without overwhelming goal pursuit.

Language weight 1,: At 1, = 0.5, the goal’s quadratic x-component

overwhelms the language signal (0% route accuracy). At Ay = 5.0,
language replaces the goal’s lateral component via decomposed
scoring, achieving 100% route accuracy. This transition is sharp:
the language signal must dominate the goal’s lateral pull, making
Ae effectively a discrete design choice.

Horizon H: Short horizons (H = 10) fail to produce enough po-
sitional spread for the language aligner to discriminate routes—the
trajectory does not extend far enough to cross both walls. H = 30
provides sufficient spread for the wall-crossing signature to distin-
guish all 9 routes.

Mixture coefficient a: While @ = 0.0 achieves lower goal dis-
tance in the short term, safe mass collapses to zero by iteration
3 (Figure 3), meaning the planner cannot recover from unsafe re-
gions. a = 0.2 trades marginal goal distance for a provable safety
floor: safe mass remains above apmin = 0.06 across all 50 iterations.

7 Discussion

The 2.2x FSR discrepancy (Table 1) confirms that planner-induced
selection invalidates standard safety calibration—a principle well-
studied in supervised learning [17] but not previously identified
for safety-critical planning. Our solution—calibrating on planner-
generated data—is simple but critical: the calibration distribution
must match deployment. A practitioner calibrating on random data
would either set 7 too conservatively—rejecting safe trajectories
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Figure 7: Ablation heatmap showing the interaction be-
tween constraint weight (c,,) and language weight (1;). Left:
Route accuracy is 100% only at c¢,,=1.0, 1,/=5.0 (dashed box);
all other combinations fail. Right: Violation rate is non-
monotonic in c,,—over-aggressive safety (c,,=3.0) paradoxi-
cally increases violations to 42.6% because the planner stalls
near walls rather than navigating through them. The opti-
mal ¢,,=1.0 achieves the lowest violations (12-15%).

and degrading performance—or believe they have a tighter safety
bound than actually holds.

SLGP is the first framework combining language conditioning,
safety guarantees, and latent action planning—three capabilities
that prior work addresses only in isolation. The mixture CEM up-
date prevents distribution collapse (Theorem 5.2), and our trajec-
tory safety bounds (Theorem 5.5) account for both selection bias
and world model prediction error, giving practitioners a principled
criterion for when their world model is accurate enough for mean-
ingful guarantees. The phased data pipeline (collect — train WM
— train CLF — calibrate 7 — evaluate — DAgger) derives 7 from
the desired safety level § and measured world model error (Corol-
lary 5.6), making calibration reproducible across environments.

Limitations. All experiments use the ColorDoor variant of Point-
Maze with low-dimensional state (ds = 4) and action (d = 2)
spaces. Generalization to high-dimensional visual observations, con-
tinuous safety constraints, or multi-agent settings remains to be
demonstrated. Theorem 5.2 guarantees convergence to alocal limit,
not the global optimum. The union bound in Theorem 5.5 is con-
servative (yielding a vacuous bound of 2.10); tighter bounds re-
quire local Lipschitz analysis or martingale-based arguments. Re-
sults are single-seed (10 episodes per method); standard deviations
across seeds are not provided. World model errors can cause safety
classifier predictions to diverge from true outcomes; periodic recal-
ibration is recommended for non-stationary environments.

Reproducibility. Code and pre-trained models will be released
upon acceptance. The implementation uses per-phase checkpoints
enabling independent reproduction; all hyperparameters are in Ap-
pendix D. Broader impact discussion is in Appendix A.

8 Conclusion

We presented SLGP, a data-driven framework for language-conditioned

planning in latent action spaces with probabilistic safety guaran-
tees. SLGP combines prototypical language-latent alignment, data-
driven safety calibration that accounts for selection bias and world
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model error, and safety-filtered CEM with provable safe mass preser-
vation. Our theoretical analysis establishes two results: the mix-
ture CEM update maintains safe sampling mass with local conver-
gence guarantees (Theorem 5.2), and trajectory safety bounds ex-
plicitly incorporate both planner-induced selection bias and world
model prediction error (Theorem 5.5). Experiments on composi-
tional ColorDoor navigation demonstrate 100% route accuracy across
all 9 compositional routes with 15.8% wall-contact rate, while our
selection bias analysis reveals a 2.2x FSR discrepancy that invali-
dates standard random-data calibration.

More broadly, this work demonstrates that latent action spaces—
despite lacking semantic grounding—can support both natural lan-
guage task specification and quantifiable safety constraints. As la-
tent action world models scale to richer domains through internet
video pretraining, the need for principled safety calibration will
only grow. The selection bias insight generalizes beyond our spe-
cific setting: any system that optimizes trajectories before evaluat-
ing safety must account for the planner’s distribution shift during
calibration.

Ethics Statement

The safety guarantees provided by SLGP are probabilistic, not ab-
solute: the theoretical bounds (Theorem 5.5) depend on calibration
assumptions that may not hold under distribution shift, and viola-
tions can occur in practice. Accordingly, SLGP should not serve as
the sole safety mechanism in real-world deployments; hardware
interlocks, human oversight, and redundant safety layers remain
essential. We note that latent action models trained on internet-
scale video could, in principle, be applied to surveillance or mil-
itary planning contexts. We encourage the research community
to develop governance frameworks for latent action models that
restrict unsafe applications. Our experiments use a simulated grid-
world environment with no human subjects, personal data, or dual-
use concerns specific to this work.

Al Use Disclosure

In accordance with ACM policy, we disclose that Al-assisted tools
were used for code development and manuscript preparation. All
scientific claims, experimental results, and theoretical analysis were
verified by the authors.
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A Limitations, Reproducibility, and Broader
Impact

Limitations. All experiments use the ColorDoor variant of Point-
Maze with low-dimensional state (ds = 4) and action (d = 2)
spaces. Generalization to high-dimensional visual observations, con-
tinuous safety constraints, or multi-agent settings remains to be
demonstrated. Theorem 5.2 guarantees convergence to a limit, not
the global optimum. The union bound in Theorem 5.5 is conser-
vative (yielding a vacuous bound of 2.10); tighter bounds require
local Lipschitz analysis. Results are single-seed (10 episodes per
method); standard deviations across seeds are not provided. World
model errors can cause safety classifier predictions to diverge from

true outcomes; periodic recalibration is recommended for non-stationary

environments.

Reproducibility. Code and pre-trained models will be released
upon acceptance. The implementation uses per-phase checkpoints
enabling independent reproduction. All hyperparameters are in
Appendix D. Experiments use seed 42 with 10 episodes per method
(27 for SLGP_lang).

Broader Impact. This work improves safety of autonomous
systems using learned world models. Our safety guarantees are
probabilistic, not absolute—violations occur under distribution shift.
Safety-critical deployments require additional safeguards (hard-
ware interlocks, human oversight). The selection bias insight has
broad implications: any deployed planning system validated on
random test data may have weaker safety properties than believed.

B Additional Theoretical Remarks

Moment-Matching Approximation. In practice, the mixture g1 =

(1—a)§x4+1+aqo is approximated by a single Gaussian via moment
matching. The bound appi, remains valid because the moment-
matched Gaussian has larger variance than gy, alone (the mix-
ture’s covariance includes an inter-component spread term), en-
suring at least as much mass on Z_ . as the aqo component con-
tributes.

Practical Enforcement of A4. Our implementation enforces
X = zeninl via std.clamp(min=0.01) at each CEM iteration.
Without this, g collapses to a point mass.

C Sample Complexity Analysis

THEOREM C.1 (SAMPLE COMPLEXITY FOR SAFE TRAJECTORY GEN-
ERATION). ToobtainK safe trajectories with probability > 1-8 from
a distribution with safe mass psaf, the required number of samples
satisfies:

2K log(1/9)

©
p?afe

ProoF. Let X; ~ Bernoulli(psafe) indicate whether sample i is
safe. The number of safe samples Sy = Zfil X; has mean Npgfe.
We require P[Sy > K] > 1-6.

2
By the Chernoff bound: P[Sy < K] < exp (—%) Set-

ting this < § and solving for N yields the stated bound. O
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Table 4 validates this bound empirically across different safe
mass levels using 50 independent trials per configuration.

Table 4: Sample complexity: theoretical bound vs empirical
requirement for K = 10 safe trajectories, § = 0.05. Empirical
values are mean + std over 50 trials.

psafe Theoretical N Empirical N Std

0.05 234.6 202.8 56.0
0.10 124.5 99.7 27.7
0.20 67.3 49.9 13.9
0.30 47.5 32.2 7.8
0.50 30.9 20.3 4.5

The theoretical bound is consistently conservative (by 15-40%),
as expected from a Chernoff-based analysis. The gap decreases
with larger pgafe, confirming the bound is tightest when safe mass
is abundant.

D Hyperparameters

Table 5 lists all hyperparameters used in the ColorDoor experi-
ments.

Table 5: Full hyperparameters for ColorDoor experiments.

Component  Parameter Value
Hidden dim 128
KL weight 0.001
World Model Ep ochs 100
Learning rate 0.001
Batch size 256
Patience (early stop) 20
Hidden dim 128
Epochs 50
Safety CLF Learning rate 0.001
Batch size 256
Patience (early stop) 15
Horizon H 30
Samples N 200
Elites K 20
Planner (CEM) Iterations 5
Mixture o 0.2
Min variance 0.01
Constraint weight 1.0
Language weight A, 5.0
Language Language model all-MiniLM-L6-v2
T 0.407
Calibration Target per-step FSR 0.005
Calibration samples 40,000
Evaluation Episodes per method 10
Max steps per episode 800
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E World Model Quality

The VAE world model achieves best validation loss of 0.00686 af-
ter early stopping. One-step prediction MSE on held-out data is
0.00418 (RMSE ~ 0.065 in state-space units, where the grid spans
[0, 19]).

This small prediction error (< 0.35% of the grid size) confirms
assumption quality for Theorem 5.5: the world model error term
ewm ~ 0.065 contributes a correction of H - L - &wm to the safety
bound. For safety-critical applications, multi-step rollout error should
also be evaluated, as compounding errors over horizon H = 30 may
exceed the single-step bound.

F Extended Ablation Data

Table 6 shows the full constraint weight X safety threshold sweep
(9 configurations, 6 episodes each) from the trajectory smoothness
experiment.

10

Anon.

Table 6: Extended ablation: constraint weight (c,,) X safety
threshold (r) interaction. Wall hit rate, route accuracy, and
goal distance across 9 configurations (6 episodes each, A, =
5.0, single seed). Reproducible via the evaluation pipeline
with modified hyperparameters.

Cay r  Wall Hit Route Acc. Goal Dist.
0.0 0.0 53.7% 0% 14.4
1.0 0.0 53.1% 0% 154
1.0 03 20.0% 0% 20.6
3.0 0.0 24.9% 33% 11.9
30 03 25.4% 0% 22.3
50 0.0 11.8% 33% 10.7
50 03 23.2% 0% 20.1
10.0 0.0 12.8% 33% 9.6
100 0.3 8.2% 33% 13.5

Key observations: (1) Adding a safety threshold (r = 0.3) con-
sistently reduces wall hit rates but increases goal distance, con-
firming the safety-performance tradeoff. (2) The interaction is non-
trivial: at ¢,y = 3.0, adding 7 = 0.3 reduces route accuracy from 33%
to 0%, because the combined constraint is too aggressive, causing
the planner to avoid all doors. (3) The best overall configuration
(cy = 10.0, 7 = 0.3) achieves the lowest wall hit rate (8.2%) while
maintaining route accuracy — but at the cost of increased goal dis-
tance (13.5 vs 9.6).
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