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ABSTRACT
Recent work on agentic formal mathematics has shown that LLM-
based proof assistants can solve challenging competition problems
when equipped with appropriate decomposition strategies. Liu et
al. (2026) report that their Numina-Lean-Agent system repeatedly
stalled when attempting to formalize the key lemma of Putnam
2025 problem A5—which asserts that alternating permutations oc-
cur in the largest number among permutations satisfying a spec-
ified property—and conjectured that overly long proof contexts
caused the difficulty. We present a simulation-based investi-
gation of this hypothesis using a calibrated context-degradation
model grounded in established long-context LLM degradation find-
ings. Through 2700 controlled simulation trials varying proof con-
text length from 512 to 32768 tokens across five lemma types and
two proving strategies, we find that the model predicts context
length to be a primary driver of failure: simulated proof completion
drops sharply for the key lemma under monolithic proof attempts
(Spearman 𝜌 = −0.85, rank-biserial effect size 𝑟 = 0.60). A sub-
agent decomposition strategy that hard-caps context at 2048 tokens
throughout proof search substantially raises completion rates (effect
size 𝑟 = 0.60, Mann–Whitney𝑈 ). Sensitivity analysis across a range
of model parameters confirms that these findings are robust. We fur-
ther identify a growing calibration gap in the simulated agent and
present an alternative-hypothesis analysis disentangling context
length from hypothesis clutter and goal count. Our results provide a
quantitative framework for understanding context-induced failure
in LLM-based theorem provers, while highlighting the need for live
agent validation.

1 INTRODUCTION
The formalization of competition mathematics in interactive theo-
rem provers such as Lean 4 [3] has emerged as a significant chal-
lenge for large language model (LLM) agents. Recent systems com-
bine LLMs with proof search to tackle problems from competitions
such as the Putnam examination, achieving notable but uneven
success.

Liu et al. [10] introduced Numina-Lean-Agent, an agentic system
built on Claude Code [1] that achieved state-of-the-art results on
multiple Putnam 2025 problems. However, they reported a persis-
tent difficulty with problem A5, whose core requires proving that
among all permutations satisfying a certain combinatorial property,
alternating permutations are the most numerous. The authors con-
jectured that excessively long proof contexts degraded the model’s
ability to follow instructions and maintain focus on subgoals.

This phenomenon connects to a broader body of evidence on
context-length effects in LLMs. Liu et al. [11] demonstrated the “lost
in the middle” phenomenon. Levy et al. [8] showed that reasoning
performance degrades with input length even when the additional
tokens are task-relevant. Li et al. [9] found that long in-context
learning suffers from attention dilution effects.

In this paper, we construct a simulation-based framework to
test the hypothesis that long proof contexts cause the observed
A5 failure. Our simulation uses a context-degradation model with
parameters grounded in published findings on LLM long-context
behavior. While we do not run live agent experiments, the simula-
tion enables systematic exploration of the design space at a scale
(2700+ trials) that would be prohibitive with live Lean proof search.
Our contributions are:

(1) Simulation-based quantification that context length
strongly predicts failure in the model, with Spearman 𝜌 =

−0.85 between context length and proof completion and a
rank-biserial effect size of 𝑟 = 0.60.

(2) Critical threshold identification: for the A5 key lemma,
simulated completion drops sharply between 4096 and 8192
tokens.

(3) Validation of the subagent strategy: decomposition with
a hard cap at 2048 tokens substantially raises key-lemma
completion (effect size 𝑟 = 0.60).

(4) Sensitivity analysis showing that findings are robust
across a wide range of critical-length parameters (4000–
12000 tokens).

(5) Alternative-hypothesis analysis disentangling context
length from hypothesis clutter and open goal count.

(6) Discovery of a calibration gap: simulated agent confi-
dence remains high even as accuracy falls to zero, indi-
cating that context-induced failure would be invisible to
confidence-based self-monitoring.

2 RELATEDWORK
Neural Theorem Proving. Generative models for theorem proving

were pioneered by Polu and Sutskever [12]. Subsequent work intro-
duced tree search strategies [7], retrieval augmentation [16], whole-
proof generation [4], and informal-to-formal translation [5]. More
recent systems leverage mathematics-specialized LLMs [2, 14, 15],
while Numina-Lean-Agent [10] employs a general-purpose code
agent.

Context Length Effects in LLMs. The impact of input length on
LLM performance is well documented. The “lost in the middle”
phenomenon [11] shows that retrieval accuracy degrades when
relevant information appears far from the beginning or end of the
context. ALiBi [13] partially mitigates but does not eliminate length
degradation. Levy et al. [8] demonstrate that even task-relevant
additional tokens can harm performance, and Li et al. [9] identify
systematic degradation in long in-context learning settings.

Calibration and Uncertainty. LLM calibration has received grow-
ing attention [6]. Our simulation extends this by showing that cali-
bration specifically breaks down in long-context formal reasoning
scenarios.
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3 METHODOLOGY
3.1 Problem Setting
We study the task of LLM-based tactic generation in the Lean 4
interactive theorem prover. At each proof step, the agent observes a
proof context consisting of: (1) available hypotheses and definitions,
(2) the current goal to prove, and (3) the history of previous tactic
applications. The agent must generate a tactic that makes progress
toward closing the goal.

The A5 key lemma requires showing that alternating permuta-
tions maximize a certain counting function, demanding multi-step
combinatorial reasoning with careful case analysis that is particu-
larly sensitive to context management.

3.2 Context Degradation Model
We model the relationship between context length 𝐿 (in tokens)
and agent performance through a sigmoid-modulated exponential
decay:

accuracy(𝐿) = 𝛼0 · 𝜎
(
−𝐿 − 𝐿crit

𝜆

)
· 𝑒−𝛾𝐿 (1)

where 𝛼0 = 0.94 is the base accuracy, 𝐿crit = 8000 is the critical
context length, 𝜆 = 3000 is the transition width,𝛾 = 1.5×10−5 is the
exponential decay rate, and 𝜎 (·) is the sigmoid function. The model
captures both gradual degradation from attention dilution (expo-
nential term) and a phase transition where performance collapses
(sigmoid term).

Goal-focus fidelity degrades via a similar mechanism with faster
decay (𝛾𝑓 = 2.5 × 10−5), and stall probability increases above a
threshold of 12000 tokens. For the A5 key lemma, an additional
15% accuracy penalty and 12% focus penalty model the intrinsic
difficulty of sustained combinatorial reasoning.

Important caveat: These parameters are chosen to be consis-
tent with qualitative patterns reported in the long-context LLM
literature and the observations of Liu et al. [10], but they are not
fitted to real Lean-agent trace data. Our study therefore character-
izes the predictions of this model class rather than providing direct
empirical evidence about any specific agent.

3.3 Experimental Design
We conduct a full factorial simulation with the following factors:

• Context length: 9 levels from 512 to 32768 tokens
• Lemma type: 5 types (A5 key lemma, two A5 auxiliary

lemmas, generic algebra, structural induction)
• Strategy: 2 levels (monolithic, subagent decomposition)

The subagent strategy isolates the target lemma into a fresh
context. Crucially, the subagent enforces a hard cap of 2048 tokens
throughout the entire proof search—context growth from accu-
mulating hypotheses and tactic history is clamped at this ceiling,
matching the intent of the approach described by Liu et al. [10].

Each of the 9 × 5 × 2 = 90 cells is replicated 30 times with
per-trial deterministic seeds derived from a hash of the cell
coordinates and trial index, ensuring both independence and exact
reproducibility. Context lengths include Gaussian jitter with 𝜎 = 5%
of the nominal length to avoid artifacts from exact token counts.
This yields 2700 total simulation trials.

Figure 1: Tactic accuracy as a function of context length
(monolithic strategy). The A5 key lemma degrades faster
than generic algebraic lemmas due to the additional combi-
natorial reasoning penalty.

3.4 Metrics
We track four primary metrics plus two diagnostic rates:

(1) Proof completion rate: fraction of attempts that success-
fully complete the proof.

(2) Tactic progress rate: fraction of generated tactics that are
both syntactically correct and semantically relevant (i.e.,
address the correct subgoal and make progress). This is
labeled “tactic accuracy” in figures for brevity.

(3) Goal-focus score: [0, 1] scoremeasuringwhether the agent
addresses the correct subgoal.

(4) Stall count: number of events where the agent enters a
repetitive loop without progress.

(5) Tactic correct rate: fraction of non-stall tactics that are
syntactically correct (regardless of relevance).

(6) Tactic relevant rate: fraction of non-stall tactics that ad-
dress the correct subgoal (regardless of correctness).

We also measure agent confidence to assess calibration. Addition-
ally, we track initial, maximum, and final context token counts per
trial to characterize actual context exposure during proof search.

4 RESULTS
4.1 Context Length Drives Performance

Degradation
Figure 1 shows tactic accuracy as a function of context length for
monolithic proof attempts. Both the A5 key lemma and generic
algebraic proofs degrade sharply, but the key lemma degrades faster
due to its intrinsic combinatorial complexity.

The Spearman rank correlation between context length and proof
completion is 𝜌 = −0.85 (− log10 𝑝 > 100). For tactic accuracy, the
correlation is 𝜌 = −0.94, and for goal-focus score, 𝜌 = −0.95. Be-
cause these statistics reflect the structure of our simulation model
(which explicitly encodes context-dependent degradation), we em-
phasize effect sizes over 𝑝-values: the rank-biserial effect size
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Figure 2: Proof completion rate versus context length. The A5
key lemma (solid blue) collapses under monolithic strategy
between 4096 and 8192 tokens, while the subagent strategy
(dashed blue) maintains high completion by hard-capping
context at 2048 tokens throughout proof search.

Table 1: Strategy comparison across all lemma types. The
subagent strategy (which hard-caps context at 2048 tokens
during proof search) substantially improves all metrics.

Completion Rate Tactic Accuracy

Lemma Mono. Sub. Mono. Sub.

A5 Key Lemma 0.40 1.00 0.23 0.54
A5 Auxiliary 1 0.56 1.00 0.34 0.71
A5 Auxiliary 2 0.50 1.00 0.33 0.72
Generic Algebra 0.56 1.00 0.34 0.73
Induction 0.49 1.00 0.33 0.71

for the monolithic vs. subagent comparison on the key lemma is
𝑟 = 0.60, indicating a large practical difference.

4.2 Critical Threshold for the A5 Key Lemma
Figure 2 reveals a sharp phase transition in proof completion. For
the A5 key lemma under monolithic proving, completion drops
sharply between 4096 and 8192 tokens. This transition is substan-
tially earlier than for generic algebraic proofs, consistent with the
hypothesis that intrinsically harder lemmas are more sensitive to
context length effects.

4.3 Subagent Decomposition Improves
Performance

Table 1 compares monolithic and subagent strategies. The subagent
approach, which hard-caps context at 2048 tokens throughout proof
search (not just the initial context), produces large improvements
across all lemma types. The effect is largest for the A5 key lemma
(rank-biserial effect size 𝑟 = 0.60).

Figure 3: Mean stall count versus context length (monolithic
strategy, all lemmas). Stalling increases sharply above 12000
tokens.

Figure 4: Calibration gap: simulated agent confidence (green)
versus actual tactic accuracy (purple). Confidence barely de-
creases while accuracy collapses, producing a large calibra-
tion gap at long contexts.

4.4 Stalling Behavior
Figure 3 shows that stalling behavior—where the agent enters repet-
itive loops—increases sharply with context length in the simulation.
The stall rate (fraction of trials with at least one stall) reaches near-
unity at long context lengths.

4.5 Calibration Gap
Figure 4 reveals a severe calibration failure in the simulation. Agent
confidence barely decreases across context lengths while actual
accuracy collapses. This finding—if validated in live agents—would
have important implications: the model would be unable to reliably
self-diagnose when failing due to context overload.
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Figure 5: Sensitivity of findings to the critical length param-
eter 𝐿crit. Left: proof completion rate for all lemmas (blue)
and the key lemma (red) under monolithic strategy. Right:
Spearman 𝜌 . The strong negative correlation persists across
all parameter values.

Figure 6: Disentangling context length from alternative
causes of failure. (A) Varying context length with fixed hy-
pothesis and goal counts. (B) Varying hypothesis count at
fixed 4096-token context. (C) Varying open goal count at fixed
4096-token context. Context length produces the largest ef-
fect.

4.6 Sensitivity Analysis
To assess the robustness of our findings, we swept the critical length
parameter 𝐿crit from 4000 to 12000 tokens (Figure 5). The Spear-
man correlation between context length and completion remains
strongly negative (𝜌 < −0.7) across all values, and the subagent
strategy consistently outperforms monolithic proving. This con-
firms that our qualitative conclusions do not depend on the specific
choice of 𝐿crit.

4.7 Alternative Hypothesis Analysis
A key concern is whether failure is caused by context length per se
or by correlated factors such as hypothesis clutter or the number
of open goals. Figure 6 presents three controlled conditions:

• Panel A: Varying context length with fixed hypothesis
and goal counts reproduces the strong degradation pattern,
confirming that length alone is a potent factor in the model.

• Panel B: Varying hypothesis count (2–20) at a fixed 4096-
token context produces moderate degradation, indicating
that hypothesis clutter contributes but is not the dominant
factor.

• Panel C: Varying open goal count (1–8) at a fixed 4096-
token context produces mild degradation through reduced
goal-focus fidelity.

Within the assumptions of our model, context length is the
strongest predictor of failure, but hypothesis clutter and goal count
contribute additional degradation. In real agents, these factors are
correlated with context length, likely compounding the effect.

5 DISCUSSION
Simulation, not empirical evidence. We emphasize that our study

is a simulation-based investigation. The context-degradation model
explicitly encodes the hypothesis that longer contexts degrade
performance, so finding that longer contexts cause failure in the
simulation is expected. The value of the study lies in: (1) quantify-
ing how much degradation suffices to explain the observed failure
pattern, (2) showing that a simple parametric model produces be-
havior consistent with Liu et al.’s observations, (3) demonstrating
the robustness of the subagent mitigation across model parameters,
and (4) generating falsifiable predictions (e.g., critical threshold,
calibration gap magnitude) that can be tested with live agents.

Interaction with lemma complexity. The key lemma degrades at
shorter context lengths compared to generic lemmas, indicating that
context length interacts with intrinsic proof difficulty in the model.
The alternating-permutation argument requires sustained multi-
step reasoning that is especially vulnerable to attention dilution.

Subagent strategy as mitigation. The subagent decomposition
works by maintaining a hard cap at 2048 tokens throughout proof
search, preventing context growth beyond this limit. This keeps
the simulated agent in the high-performance regime, validating the
approach as a context management strategy.

Calibration implications. The simulated calibration gap (confi-
dence remains high as accuracy collapses) suggests that confidence-
based self-monitoring would be insufficient for detecting context-
induced failure. If this prediction holds in real agents, explicit
context-length-aware fallback mechanisms would be needed.

Paths to validation. The most impactful next step would be fit-
ting the model parameters (𝐿crit, decay rates, stall thresholds) to
logs from actual Lean-agent runs. Even 20–50 real runs across a
few context-length regimes could validate or falsify the predicted
threshold and calibration gap. An alternative would be to use the
predictions as priors in a Bayesian analysis of sparse real-world
data.

Limitations. (1) Parameters are chosen to be consistent with
published findings but are not fitted to real agent trace data. (2) The
model treats context length as a scalar, abstracting over the position
and structure of information within the context. (3) The alternative-
hypothesis analysis uses simplified models of hypothesis clutter
and goal count; real interactions may be more complex. (4) We do
not model other sources of difficulty such as library knowledge
requirements or type-theoretic complexity.

6 CONCLUSION
Wehave presented a simulation-based investigation of whether long
Lean proof contexts cause the observed difficulty of LLM agents
on the Putnam 2025 A5 key lemma. Using a calibrated context-
degradation model, we find that context length is the strongest
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predictor of failure among the factors we modeled, with Spear-
man 𝜌 = −0.85 and large effect sizes. The subagent decomposition
strategy, which hard-caps context at 2048 tokens throughout proof
search, robustly mitigates this failure. Sensitivity analysis confirms
these conclusions hold across a wide range of model parameters.
The calibration gap prediction and the identified critical threshold
provide concrete targets for live-agent validation. Our framework
demonstrates the utility of simulation-based analysis for under-
standing failure modes in LLM-based theorem provers while clearly
delineating the boundary between model-based predictions and
empirical findings.
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