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ABSTRACT

We present a simulation-based proxy model of agentic planning
reliability in physics-governed domains. Our framework generates
300 synthetic planning problems across six space-mission-inspired
domains and evaluates four agentic strategy profiles—direct prompt-
ing, ReAct-style reasoning, chain-of-thought planning, and physics-
augmented planning—under varying difficulty, constraint tight-
ness, and planning horizons. Our results reflect model assump-
tions and are not direct measurements of any deployed LLM agent.
Within our model, the best-performing physics-augmented strat-
egy achieves only a 0.4820 + 0.0569 mean success rate, while di-
rect prompting yields 0.0452 + 0.0400. We identify three reliabil-
ity failure drivers: horizon degradation, where modeled reliability
declines at —0.0057 per additional planning step; constraint sen-
sitivity, where all strategies show declining performance under
tighter physical constraints (slope —0.0311 per unit tightness for
the physics-augmented strategy); and domain-dependent brittle-
ness, with a 0.0463 gap between the best and worst domains. A
coeflicient sensitivity analysis demonstrates that these findings
are robust across a wide range of model parameters. Our proxy
model suggests that even tool-augmented agentic strategies face
fundamental reliability limitations in physics-constrained planning,
motivating hybrid neuro-symbolic architectures for safety-critical
applications.

1 INTRODUCTION

The deployment of large language models (LLMs) as autonomous
planning agents has attracted significant interest across robotics,
operations research, and scientific discovery [1, 2]. However, most
existing agent benchmarks emphasize symbolic or weakly grounded
environments that do not capture hard physical constraints, long-
horizon planning, and irreversible feasibility limits [8]. Conse-
quently, it remains unclear whether current agentic systems can
reliably operate in complex real-world planning domains governed
by physical laws.

This question is particularly pressing for safety-critical appli-
cations such as space mission planning, where plans must satisfy
kinematic constraints (delta-v budgets, orbital mechanics), resource
limits (fuel, power, bandwidth), temporal windows (eclipse periods,
communication passes), and concurrency requirements (mutual
exclusion, dependency ordering). Violations of these constraints
can lead to irreversible mission failures.

We present a simulation-based proxy model that systemat-
ically evaluates the modeled reliability of agentic LLM planning
strategies across physics-governed domains. Rather than evaluating
specific deployed LLM systems, we construct a parametric reliability
model whose coefficients reflect the qualitative patterns reported
in the planning-with-LLMs literature [2, 7, 8]. Our framework gen-
erates 300 diverse planning problems spanning six domains—orbit

transfer, resource allocation, multi-agent scheduling, trajectory opti-
mization, rendezvous and docking, and constellation management—
and evaluates four agentic strategy profiles at varying difficulty
levels, constraint tightness, and planning horizons.

Our key contributions are: (1) a physics-constrained planning
problem generator producing diverse synthetic benchmarks with
calibrated difficulty; (2) a parametric reliability model capturing
horizon degradation, constraint sensitivity, and irreversibility fail-
ure drivers with explicit, reproducible coefficients; (3) a comprehen-
sive comparative evaluation showing that physics-augmented plan-
ning achieves a 0.4368 absolute improvement over direct prompting
within the model; (4) a coefficient sensitivity analysis demonstrat-
ing that key findings hold across a wide range of parameter values;
and (5) identification of fundamental reliability limitations that
persist even under the most favorable model assumptions.

2 RELATED WORK

LLM Planning Capabilities. Recent studies have critically ex-
amined whether LLMs can plan effectively. Valmeekam et al. [7]
showed that LLMs struggle with classical planning benchmarks,
while Kambhampati et al. [2] argued that LLMs lack genuine plan-
ning capabilities but can serve useful roles in LLM-modulo frame-
works. Stechly et al. [6] demonstrated self-verification limitations.
Our proxy model encodes these qualitative findings as parametric
strategy profiles.

Agentic Strategies. ReAct [11] introduced reason-act-observe
loops for language agents. Chain-of-thought prompting [9] im-
proves multi-step reasoning. Reflexion [4] adds verbal self-reflection.
Tool-augmented approaches [3] enable external verification. We
model these strategy families as distinct coefficient profiles govern-
ing constraint sensitivity and horizon degradation.

Physics-Constrained Benchmarks. AstroReason-Bench [8] intro-
duced unified evaluation across heterogeneous space planning prob-
lems with strict kinematic and resource constraints. TravelPlan-
ner [10] evaluated real-world planning with language agents. Silver
et al. [5] explored generalized planning with LLMs in PDDL do-
mains. Our framework draws inspiration from these benchmarks to
define problem characteristics while using simulation rather than
direct LLM evaluation.

3 METHODOLOGY

3.1 Physics-Governed Planning Domains

We define six planning domains inspired by space mission opera-
tions, each governed by distinct physical constraints:

(1) Orbit Transfer: Hohmann and bi-elliptic maneuvers with
delta-v budgets (5-15 steps, 3-8 constraints).

(2) Resource Allocation: Fuel, power, and mass budget opti-
mization (8-25 steps, 5-12 constraints).



(3) Multi-Agent Scheduling: Concurrent operations with
timing constraints (10-30 steps, 6—15 constraints).

(4) Trajectory Optimization: Gravity-assist trajectory plan-
ning (6-20 steps, 4-10 constraints).

(5) Rendezvous and Docking: Proximity operations under
relative dynamics (4-12 steps, 5-10 constraints).

(6) Constellation Management: Multi-satellite constellation
planning (12-30 steps, 815 constraints).

Each problem instance is characterized by a composite complex-
ity score incorporating planning horizon H, number of constraints
C, constraint tightness 7 € [0, 1], state dimensionality, and irre-
versibility fraction . Problems are generated with explicit seeding
for full reproducibility.

3.2 Agent Strategy Profiles

We model four agentic planning strategy profiles that represent the
current landscape of LLM-based planning:

e Direct Prompt: Single-shot prompting with the full prob-
lem description. Lowest capability baseline.

e ReAct-Style: Reason-act-observe loop with iterative re-
finement. Some implicit physics checking via observation.

e CoT Planning: Chain-of-thought multi-step planning with
explicit reasoning traces. Better constraint awareness.

o Physics-Augmented: CoT planning augmented with a
dedicated physics constraint verification tool. Highest ca-
pability profile.

Each strategy is characterized by five coefficients: base success
rate fis, horizon decay A, constraint sensitivity ys, irreversibility
penalty Js, and physics mitigation factor ¢s. These coeflicients are
chosen to be consistent with qualitative patterns in the literature [2,
7] and are validated through sensitivity analysis (Section 4.6).

3.3 Parametric Reliability Model

Our proxy model captures key failure drivers observed in LLM-
based planners. For each strategy profile s and problem p, the suc-
cess probability is:

H C
Psuccess (s, p) zﬁs_/ls'g_)/s(l_ﬁﬁs)'r'g_ s-1=0.03(d—1) (1)

where f; is the base success rate, H is the planning horizon, 7
is constraint tightness, C is the number of constraints,  is the
irreversibility fraction, ¢ is the physics mitigation factor, and d is
the difficulty level.

Critically, the physics mitigation factor ¢ reduces the effective
constraint sensitivity ys(1— ¢s) rather than adding a positive bonus
proportional to tightness. This ensures that all strategies show de-
clining success with increasing constraint tightness, with physics-
augmented planning degrading more slowly rather than counter-
intuitively improving.

Failure Driver Taxonomy. We distinguish between failure drivers
(the underlying causes within the model) and failure modes (the
observable manifestations in real systems). Our model captures
four failure drivers:

(1) Horizon Degradation: Loss of plan coherence over ex-
tended sequences (governed by Ag).

Anon.

Table 1: Overall success rates by agentic strategy profile. The
physics-augmented strategy achieves the highest modeled
reliability but remains below 50%.

Strategy Profile Mean Success Rate ~ Std. Dev.
Direct Prompt 0.0452 0.0400
ReAct-Style 0.2418 0.0700
CoT Planning 0.3452 0.0594
Physics-Augmented 0.4820 0.0569

(2) Constraint Sensitivity: Inability to satisfy tight physical
constraints (governed by ys, mitigated by ¢s).

(3) Irreversibility Penalty: Failure to account for irreversible
action consequences (governed by Js).

(4) General Reasoning Error: Baseline logical errors in plan
construction.

3.4 Experimental Setup

We generate 50 problems per domain (300 total) with difficulty lev-
els 1-5 using seed 42. Each strategy—problem pair is evaluated over
200 Monte Carlo trials in the main experiment and 300 trials for
horizon and tightness analyses, with explicit per-experiment seeds
for reproducibility. The canonical problem suite is saved as JSON
and loaded for all experiments, ensuring no mismatch between the
published dataset and experimental inputs. All configuration meta-
data, seeds, and the full results table are recorded for provenance.

4 RESULTS
4.1 Overall Strategy Comparison

Table 1 presents the overall success rates across all domains and
difficulty levels.

The physics-augmented strategy outperforms direct prompting
by an absolute margin of 0.4368, demonstrating the substantial
modeled benefit of integrating physics constraint checking tools.
However, even the best strategy achieves only 0.4820 mean success
rate—below the 50% mark and far below the reliability threshold
required for autonomous operation in safety-critical domains.

4.2 Horizon Degradation

Figure 2 shows how modeled planning reliability degrades with
increasing horizon length. All strategies exhibit declining success
rates as the planning horizon grows, with direct prompting becom-
ing nearly unusable beyond 15 steps.

The physics-augmented strategy shows the most graceful degra-
dation, with a fitted slope of —0.0057 success rate per additional
planning step, declining from 0.5500 at H = 3 to 0.3833 at H = 30.
Direct prompting degrades from 0.1233 to 0.0033 over the same
range. ReAct drops from 0.3667 at H = 3 to 0.0633 at H = 30, while
CoT planning decreases from 0.4167 to 0.1833.

4.3 Constraint Tightness Effects

Figure 3 illustrates the impact of constraint tightness on both suc-
cess rate and constraint violations. In the revised model, all strate-
gies show declining success with increasing tightness. As tightness
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Figure 1: Overall success rates by agentic strategy profile. Er-
ror bars indicate standard deviation across domain-difficulty
combinations. Dashed line shows 50% threshold.
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Figure 2: Modeled planning reliability vs. horizon length. All
strategies degrade with longer horizons, confirming horizon
degradation as a fundamental failure driver.

increases from 0.1 to 0.9, direct prompting success drops from
0.1200 to 0.0033, while its average constraint violations rise from
0.12 to 1.54.

The physics-augmented strategy also shows declining success
with increasing tightness (fitted slope —0.0311 per unit), but de-
grades more slowly than other strategies, with violations increasing
modestly from 0.04 to 0.33 across the tightness range. This confirms
that physics-aware tool access mitigates but does not eliminate con-
straint sensitivity.

4.4 Cross-Domain Analysis

Table 2 presents the cross-domain comparison between the weak-
est (Direct Prompt) and strongest (Physics-Augmented) strategy
profiles.

The best-performing domain for the physics-augmented strategy
is Orbit Transfer (0.5052), while the worst is Multi-Agent Scheduling
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Figure 3: Effect of constraint tightness on success rate (left)
and average constraint violations (right). All strategies de-
cline with increasing tightness; physics-augmented planning
degrades most slowly.

Table 2: Cross-domain success rates for Direct Prompt vs.
Physics-Augmented strategy profiles.

Domain Direct Prompt Physics-Aug.
Orbit Transfer 0.0838 0.5052
Resource Allocation 0.0581 0.4927
Multi-Agent Sched. 0.0164 0.4589
Trajectory Opt. 0.0351 0.4761
Rendezvous Dock. 0.0567 0.4937
Constellation Mgmt. 0.0209 0.4609
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0.6 B Direct Prompt
. @ Physics-Augmented
0.5

[

s 0.4

o

"

4

003

o

=1

7]
0.2
0.1

0.0
Constellation

Orbit Resource Multi-Agent Trajectory
opt. gmt.

Rendezvous
Transfer Alloc. Do

Figure 4: Cross-domain comparison of Direct Prompt vs.
Physics-Augmented strategy profiles across six planning do-
mains.

(0.4589), yielding a domain gap of 0.0463. Domains with higher irre-
versibility fractions, more concurrent constraints, and longer hori-
zons (Multi-Agent Scheduling, Constellation Management) prove
more challenging.

4.5 Constraint Violations

The average constraint violations per problem reveal the mech-
anisms behind modeled planning failures. Direct prompting pro-
duces 1.5352 average violations, while physics-augmented planning
reduces this to 0.3758—a 75.5% reduction. ReAct achieves 1.0417
violations and CoT planning achieves 0.7923 violations.
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Figure 5: Average constraint violations by strategy profile.
Physics-augmented planning achieves the lowest violation
rate through the modeled effect of dedicated constraint
checking.
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Figure 6: Sensitivity analysis: physics-augmented success
rate across physics mitigation (¢) and constraint sensitivity
(y) coefficient values. The star marks our default coefficients
(¢ = 0.55, y = 0.04). Even under the most favorable settings
(¢ = 0.8, y = 0.02), success remains below 0.65.

4.6 Coeflicient Sensitivity Analysis

To address whether our conclusions depend on specific coefficient
choices, we perform a sensitivity analysis sweeping the physics
mitigation factor ¢ € [0.3,0.8] and constraint sensitivity y €
[0.02,0.08] for the physics-augmented strategy profile at H = 15,
7 = 0.7, difficulty 3 (Figure 6).

The analysis reveals that even under the most favorable coeffi-
cient settings (¢ = 0.8, y = 0.02), the modeled success rate remains
below 0.65 for this problem configuration. For a wide range of
plausible coeflicients, the physics-augmented strategy consistently
falls below the 0.90 reliability threshold required for safety-critical
applications. This demonstrates that the core finding—insufficient

Anon.

reliability for autonomous deployment—is robust to coefficient
choice.

4.7 Failure Driver Analysis

Across all strategy profiles, we observe four primary failure drivers
within the model:

e Constraint Violation: The modeled agent generates plans
that violate kinematic, resource, or temporal constraints.
This is the dominant failure driver for direct prompting.

e Horizon Degradation: Plan coherence degrades over long
sequences, leading to cascading errors in later steps.

o Irreversibility Failure: The agent fails to account for ir-
reversible actions, committing to suboptimal or infeasible
states early in the plan.

o General Reasoning Error: Baseline logical errors in plan
construction, not attributable to specific physical constraint
violations.

5 DISCUSSION

Our proxy model results suggest that current agentic LLM strategy
profiles face substantial reliability challenges in physics-governed
planning domains. Several key insights emerge:

Tool Augmentation Is Necessary but Insufficient. The physics-
augmented strategy provides a 0.4368 absolute improvement over
direct prompting, confirming that access to constraint verification
tools is essential within the model. However, the best strategy still
achieves only 0.4820 mean success, insufficient for safety-critical
applications requiring greater than 90% reliability.

Horizon Limits Are Fundamental. The observed horizon degrada-
tion slope of —0.0057 per step suggests that—if our model reflects
real system behavior—current architectures face fundamental lim-
itations in maintaining plan coherence over extended horizons.
Even physics-augmented planning drops to 0.3833 success at 30-
step horizons.

All Strategies Decline Under Tight Constraints. In our revised
model, all strategies including the physics-augmented profile show
declining success with increasing constraint tightness (PA slope:
—0.0311). The physics mitigation factor slows this decline but does
not reverse it, reflecting that tool access mitigates but does not
eliminate constraint reasoning challenges.

Domain-Dependent Brittleness. The 0.0463 domain gap between
Orbit Transfer (0.5052) and Multi-Agent Scheduling (0.4589) sug-
gests that modeled planning reliability depends significantly on
domain characteristics such as constraint complexity, concurrency,
and irreversibility.

Coefficient Robustness. Our sensitivity analysis shows that the
key finding—physics-augmented planning falling well below the
0.90 safety threshold—holds across a broad range of coefficient
values, strengthening confidence in this conclusion even though
specific numerical results depend on model assumptions.

6 LIMITATIONS

We explicitly acknowledge the following limitations:
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(1) Proxy Model, Not Empirical Evaluation. Our frame-
work evaluates a parametric simulation model of agent
reliability, not actual LLM agents. The results reflect model
assumptions and coefficient choices, and should be inter-
preted as predictions under the model rather than empirical
measurements of deployed systems.

(2) Coefficient Calibration. Strategy profile coefficients are
chosen to reflect qualitative patterns from the literature
rather than fitted to empirical agent performance data.
While our sensitivity analysis shows conclusions are robust
across a range of coefficients, future work should calibrate
against real agent rollouts.

(3) Independence Assumption. The model assumes indepen-
dent trials; in reality, LLM agents may exhibit correlated
failures across similar problems or benefit from in-context
learning across related tasks.

(4) No Executable Physics. The “physics checker” is modeled
as a mitigation coefficient, not as an actual physics simula-
tor or constraint satisfaction solver. Real tool-augmented
agents may exhibit different failure patterns depending on
the quality of the physics tool.

(5) Partial Observability. Real physics-governed planning

may involve partially observable states, sensor noise, and

model uncertainty not captured by our fully observable
problem formulation.

Static Strategy Profiles. Our model treats each strategy as

having fixed coeflicients. Real agents may adapt, learn from

errors (e.g., Reflexion [4]), or improve through few-shot
in-context examples.

(6

=

7 CONCLUSION

We have presented a simulation-based proxy model for investigat-
ing the reliability of agentic LLM strategies in physics-governed
planning domains. Our model predicts that even the best strategy
profile—physics-augmented planning with constraint verification
tools—achieves only 0.4820 mean success across six domains, with a
0.4368 lift over direct prompting. Three key failure drivers emerge:
horizon degradation (slope —0.0057 per step), constraint sensitivity
(all strategies decline with tightness), and domain-dependent brit-
tleness (gap of 0.0463). A coefficient sensitivity analysis confirms
these findings are robust across a wide parameter range.

While our results are predictions of a proxy model rather than
empirical measurements, they suggest that physics-governed plan-
ning presents fundamental challenges for current agentic architec-
tures. Future work should: (a) validate the model against real LLM
agent runs on physics-constrained benchmarks; (b) explore hybrid
neuro-symbolic planning with integrated physics simulators; and
(c) develop hierarchical planning approaches that decompose long
horizons into verified sub-problems.
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