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ABSTRACT
Multi-agent LLM systems promise improved reliability through
specialization and cross-checking, but naive aggregation mecha-
nisms can amplify correlated errors and produce poorly calibrated
consensus. We formalize the disagreement resolution problem as
weighted opinion aggregation under correlated noise and com-
pare six mechanisms: simple averaging, median, trimmed mean,
evidence-weighted aggregation, diversity-aware aggregation, and
calibration-penalized evidence weighting. Through systematic ex-
periments varying agent count (𝑛 ∈ {3, . . . , 21}), inter-agent cor-
relation (𝜌 ∈ [0, 0.9]), and evidence quality (𝑞 ∈ [0.5, 0.95]), with
20-seed replications and paired evaluation, we demonstrate that
evidence-weighted aggregation achieves the lowest global mean
absolute error (MAE = 0.178± 0.102) and highest relative efficiency
(𝑛eff/𝑛 = 0.402). We introduce the variance degradation ratio—
comparing aggregated MSE to the independent-agent ideal—as a
metric that properly captures correlation-induced performance loss
(values exceeding 1.0 at 𝜌 > 0). At 𝜌 = 0.9, all mechanisms suffer
substantial degradation (ratio ≈ 6), but evidence-weighted aggrega-
tion consistently degrades least. These results establish principled
baselines for disagreement resolution in production multi-agent
systems.
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1 INTRODUCTION
Multi-agent designs in large language model (LLM) systems en-
able specialization, cross-checking, and collaborative reasoning
across complex tasks [11]. However, when multiple agents debate
or provide critiques, the aggregation of their opinions into a fi-
nal consensus is far from trivial. Naive approaches such as simple
averaging assume independence among agents—an assumption fre-
quently violated when agents share architectures, training data, or
prompting strategies [3].

The core challenge, as identified by Xu et al. [11], is that multi-
agent debate can amplify errors if agents share the same blind spots,
or if the aggregation mechanism is poorly calibrated. This paper
addresses this open problem by formalizing disagreement resolu-
tion as weighted opinion aggregation under correlated noise and
systematically comparing six mechanisms with increasing sophisti-
cation.

Our contributions are:

(1) A formal model of multi-agent opinion generation with
tunable correlation, informative evidence quality (where
per-agent noise depends on evidence scores), and calibra-
tion parameters.

(2) Six aggregation mechanisms spanning naive to calibrated
approaches, including robust baselines (median, trimmed
mean).

(3) A revised evaluation framework using variance degradation
ratio and relative efficiency that properly captures correlation-
induced performance loss, replacing the prior error am-
plification metric that was bounded below 1.0 for convex
aggregators.

(4) Systematic evaluation across 500 problems × 20 seeds with
paired mechanism comparison on shared datasets, provid-
ing mean ± standard deviation for all metrics.

2 RELATEDWORK
The wisdom of crowds literature establishes that independent es-
timates, when averaged, can outperform individual experts [4, 9].
Hong and Page [5] showed that diversity in problem-solving ap-
proaches is more valuable than individual ability. DeGroot [2] for-
malized iterative opinion pooling for reaching consensus. Lorenz
et al. [8] demonstrated that social influence can undermine crowd
wisdom by increasing correlation—a finding directly relevant to
multi-agent LLM systems where shared training data plays an anal-
ogous role.

Robust aggregation methods such as the median and trimmed
mean [6] provide resistance to outliers and heavy-tailed error distri-
butions, and have been studied extensively in the robust statistics
literature.

In the LLM context, Du et al. [3] demonstratedmulti-agent debate
for improving factuality, while Liang et al. [7] explored divergent
thinking in multi-agent settings. Wang et al. [10] proposed mixture-
of-agents architectures. Chen et al. [1] introduced round-table con-
ference protocols for consensus among diverse LLMs. Zhang et
al. [12] examined collaboration mechanisms from a social psychol-
ogy perspective.

Our work differs from prior studies by (1) explicitly modeling
the dependence between evidence scores and agent noise (mak-
ing evidence weighting non-trivially informative), (2) introducing
metrics that capture correlation-induced degradation relative to
the independent-agent ideal, and (3) providing paired multi-seed
evaluation with uncertainty quantification.

3 PROBLEM FORMULATION
Consider 𝑛 agents providing opinions {𝑜1, . . . , 𝑜𝑛} on a problem
with true answer 𝜃 . Each agent 𝑖 first draws an evidence score
𝑒𝑖 ∼ Beta(10𝑞, 10(1−𝑞) + 1) reflecting the quality of its supporting
material, where 𝑞 is a global evidence quality parameter. Each
agent’s opinion is then modeled as:

𝑜𝑖 = 𝜃 +
(√

𝜌 𝑧 +
√︁
1 − 𝜌 𝜖𝑖

)
· 𝜎𝑖 (1)

where 𝑧 ∼ N(0, 1) is a shared error component (blind spots), 𝜖𝑖 ∼
N(0, 1) are independent errors, 𝜌 ∈ [0, 1] controls inter-agent
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correlation, and 𝜎𝑖 = 2(1 − 𝑞) (1.5 − 𝑒𝑖 ) is an agent-specific noise
scale that depends on evidence quality. Agents with higher evidence
scores have lower noise variance, making evidence weighting a
meaningful signal.

Each agent also reports a confidence value 𝑐𝑖 = 0.5 · (1 + |𝑜𝑖 −
𝜃 |)−1 + 0.5 · 𝑢𝑖 where 𝑢𝑖 ∼ Uniform(0.3, 1.0), introducing miscali-
bration between stated confidence and actual accuracy.

3.1 Metrics
We define two key metrics that capture the effect of correlation on
aggregation quality.

Variance degradation ratio. Under independence, the MSE of
the simple average scales as MSEind/𝑛. The variance degradation
ratio compares the actual aggregated MSE to this ideal:

VDR =
MSEagg
MSEind/𝑛

(2)

Values near 1.0 indicate that the aggregator achieves the independent-
agent ideal; values exceeding 1.0 indicate correlation-induced degra-
dation. Theoretically, for simple averaging under equi-correlated
noise: VDR = 1 + (𝑛 − 1)𝜌 .

Relative efficiency.The effective number of independent agents
is 𝑛eff = MSEind/MSEagg, and relative efficiency is 𝑛eff/𝑛. A value
of 1.0 means the aggregator uses all agents as effectively as if they
were independent.

4 AGGREGATION MECHANISMS
We compare six mechanisms. All produce estimates as weighted
averages 𝜃 =

∑
𝑖 𝑤𝑖𝑜𝑖 with

∑
𝑖 𝑤𝑖 = 1 and 𝑤𝑖 ≥ 0 (except median,

which is a non-linear aggregator).

4.1 Simple Average
Equal weights: 𝜃SA = 1

𝑛

∑𝑛
𝑖=1 𝑜𝑖 . This is the standard “wisdom of

crowds” baseline. Note that in continuous estimation tasks, this is
the appropriate counterpart to majority voting in classification; we
avoid the “majority vote” label to prevent confusion with discrete
settings.

4.2 Median
𝜃Med = median(𝑜1, . . . , 𝑜𝑛). Provides robustness to outliers at the
cost of statistical efficiency under Gaussian noise.

4.3 Trimmed Mean
𝜃TM = 1

𝑛−2𝑘
∑𝑛−𝑘
𝑖=𝑘+1 𝑜 (𝑖 ) where 𝑜 (𝑖 ) are order statistics and 𝑘 =

⌊0.2𝑛⌋. A compromise between the mean and median.

4.4 Evidence-Weighted
Weights proportional to evidence scores: 𝜃EW =

∑𝑛
𝑖=1𝑤𝑖𝑜𝑖 where

𝑤𝑖 = 𝑒𝑖/
∑

𝑗 𝑒 𝑗 . Because 𝑒𝑖 is informative of agent noise (higher 𝑒𝑖
implies lower 𝜎𝑖 ), this mechanism concentrates weight on more
reliable agents.

Table 1: Global summary across all experimental conditions
(agent count, correlation, and evidence quality sweeps). Mean
± std computed across conditions. Best values in bold.

Mechanism Mean MAE Mean VDR Mean Rel. Eff.

Simple Average 0.184 ± 0.106 3.262 0.379
Median 0.190 ± 0.110 3.426 0.340
Trimmed Mean 0.184 ± 0.107 3.237 0.375
Evidence Weighted 0.178 ± 0.102 3.077 0.402
Diversity Aware 0.181 ± 0.103 3.164 0.389
Calib.-Penalized EW 0.182 ± 0.112 3.120 0.394

4.5 Diversity-Aware
Combines evidence quality with a diversity bonus that penalizes
agents whose opinions cluster:

𝑑𝑖 = 1 − 1
𝑛 − 1

∑︁
𝑗≠𝑖

exp(−|𝑜𝑖 − 𝑜 𝑗 |), 𝜃DA =

𝑛∑︁
𝑖=1

𝑒𝑖 · 𝑑𝑖∑
𝑗 𝑒 𝑗 · 𝑑 𝑗

𝑜𝑖 (3)

4.6 Calibration-Penalized Evidence Weighting
Penalizes agents whose confidence exceeds their evidence support:

𝜃CP =

𝑛∑︁
𝑖=1

𝑒𝑖 (1 − |𝑐𝑖 − 𝑒𝑖 |)2∑
𝑗 𝑒 𝑗 (1 − |𝑐 𝑗 − 𝑒 𝑗 |)2

𝑜𝑖 (4)

Thismechanism is named “calibration-penalized” rather than “Bayesian”
because it is a heuristic weighting rule motivated by calibration
principles, not derived from an explicit probabilistic model.

5 EXPERIMENTS
We evaluate across three experimental axes with 500 problems
each, replicated over 20 seeds (base seed = 42). For each condi-
tion and seed, we generate one shared dataset and evaluate all
six mechanisms on the same data (paired evaluation), eliminating
between-mechanism variance from different random draws.

Experiment A: Agent count. We vary 𝑛 ∈ {3, 5, 7, 9, 11, 15, 21}
with fixed 𝜌 = 0.3 and 𝑞 = 0.8.

Experiment B: Correlation.Wevary 𝜌 ∈ {0.0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9}
with 𝑛 = 7 and 𝑞 = 0.8.

ExperimentC: Evidence quality.Wevary𝑞 ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95}
with 𝑛 = 7 and 𝜌 = 0.3.

5.1 Results
Table 1 presents the global summary computed across all experi-
mental conditions (agent count, correlation, and evidence quality
sweeps). Evidence-weighted aggregation achieves the best overall
performance with mean MAE = 0.178 and highest relative efficiency
of 0.402, indicating it extracts the most information from each
additional agent. The calibration-penalized and diversity-aware
mechanisms also outperform simple averaging, while the median
is consistently the worst due to its lower statistical efficiency under
the Gaussian noise model.

Figure 1 shows that all mechanisms benefit from increasing agent
count, consistent with the wisdom of crowds effect [9]. At 𝑛 =

21, evidence-weighted aggregation achieves MAE = 0.138 ± 0.004,
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Figure 1: Mean Absolute Error vs. number of agents (mean
± std over 20 seeds). Error bars shown for all mechanisms.
Evidence-weighted aggregation maintains a consistent ad-
vantage.

Figure 2: Variance degradation ratio vs. inter-agent corre-
lation. The dashed curve shows the theoretical prediction
1 + (𝑛−1)𝜌 for equal-weight averaging. Values above 1.0 indi-
cate performance worse than the independent-agent ideal.
Evidence-weighted aggregation degrades least at high corre-
lation.

while the simple average reaches 0.143 ± 0.004, a difference that is
statistically significant across seeds.

Figure 2 reveals the critical impact of correlation on aggregation
quality. At 𝜌 = 0, simple averaging achieves VDR ≈ 1.0 (matching
the iid ideal), while evidence-weighted aggregation achieves VDR
= 0.927 ± 0.044 (below 1.0, indicating it is better than equal-weight
averaging even under independence, because it concentrates weight
on lower-noise agents). As correlation increases, all mechanisms
degrade substantially: at 𝜌 = 0.9, VDR reaches approximately 6
for all mechanisms, closely matching the theoretical prediction of
1+6×0.9 = 6.4. Crucially, evidence-weighted aggregation degrades
least (VDR = 5.94 ± 0.04).

Figure 3 confirms that higher evidence quality benefits all mech-
anisms, but evidence-aware methods show the largest gains. At
𝑞 = 0.95, all mechanisms converge to MAE ≈ 0.032 as individual

Figure 3: MAE vs. evidence quality (mean ± std over 20 seeds).
Evidence-weighted and calibration-penalized mechanisms
show the largest gains as evidence quality improves.

Figure 4: Relative efficiency (𝑛eff/𝑛) vs. agent count. At 𝜌 = 0.3,
all mechanisms fall below the iid ideal of 1.0. Evidence-
weighted aggregation consistently achieves the highest effi-
ciency.

agent noise becomes very small. The advantage of evidence weight-
ing is most pronounced at intermediate quality (𝑞 = 0.7–0.8), where
the signal-to-noise ratio in evidence scores is most informative.

Figure 4 shows that relative efficiency decreases as𝑛 grows under
correlation (𝜌 = 0.3), because additional agents contribute increas-
ingly redundant information. The simple average’s efficiency at
𝑛 = 21 is only 0.147, meaning 21 correlated agents are equivalent to
approximately 3.1 independent ones. Evidence-weighted aggrega-
tion achieves 0.156, extracting about 6% more effective information.

6 DISCUSSION
Our revised experiments reveal several findings that differ from
common intuitions about multi-agent aggregation.

Evidence weighting is the strongest mechanism when evi-
dence is informative. When per-agent noise is correlated with
evidence scores (our revised generator), evidence-weighted aggrega-
tion consistently outperforms all other mechanisms. This is because
it effectively concentrates weight on agents with lower variance,
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Figure 5: Global summary comparison across all conditions.
(a) Mean MAE with standard deviation bars. (b) Mean vari-
ance degradation ratio. (c) Mean relative efficiency. Evidence-
weighted aggregation is best on all three metrics.

achieving MSE below the equal-weight independent-agent ideal
even at 𝜌 = 0.

Robust estimators do not help under Gaussian correlation.
The median and trimmed mean were added as baselines motivated
by their resistance to outliers [6]. Under our Gaussian noise model,
however, they are strictly inferior to the simple average because
they discard information. This suggests that robust aggregation
is most valuable when the noise model includes heavy tails or
adversarial agents, a direction for future work.

Correlation is the dominant factor in aggregation qual-
ity. Increasing 𝜌 from 0 to 0.9 degrades variance by a factor of
≈6×, dwarfing the improvements from any mechanism choice. At
𝜌 = 0.9, even the best mechanism achieves only 𝑛eff/𝑛 ≈ 0.17,
meaning 7 highly correlated agents are equivalent to ≈1.2 inde-
pendent ones. This underscores that in practice, reducing agent
correlation—through diverse architectures, training data, or prompt-
ing strategies—is far more impactful than choosing the optimal
aggregation mechanism.

Calibration-penalized weighting offers modest benefits.
The calibration-penalized mechanism outperforms simple averag-
ing but underperforms pure evidence weighting, suggesting that
the calibration penalty (which depends on the noisy confidence
signal) introduces as much variance as it removes.

6.1 Implications for Multi-Agent LLM Systems
• Always require evidence-backed critiques. When evidence

scores are informative of agent quality, even simple evi-
dence weighting yields significant gains.

• Prioritize agent diversity over aggregation sophistication.
Reducing 𝜌 has a far larger effect than optimizing weights.

• Monitor correlation. The variance degradation ratio pro-
vides a practical diagnostic: if VDR ≫ 1, the system is
operating in a regime where adding more agents yields
diminishing returns.

• Use robust estimators (median, trimmed mean) only when
adversarial agents or heavy-tailed errors are expected.

6.2 Limitations and Threats to Validity
This study has several important limitations.

Synthetic model.Our noise model assumes a single-factor equi-
correlated Gaussian structure, which is substantially simpler than
real multi-agent LLM systems where correlation is topic-dependent,

non-stationary, and structured. Real agent errors may be heavy-
tailed, multi-modal, or adversarial.

Scalar evidence. We model evidence as a scalar score, whereas
real evidence includes citations, logical derivations, and empiri-
cal data of varying quality and relevance. The mapping from rich
evidence to a scalar is itself a non-trivial problem.

No debate dynamics. Our model evaluates one-shot aggre-
gation. Real multi-agent debate involves iterative rounds where
agents update opinions, potentially introducing path-dependent
dynamics and strategic behavior [12].

Fixed correlation structure.All agents share the same pairwise
correlation. In practice, subsets of agents (e.g., those sharing an
architecture) may be more correlated with each other than with
agents using different approaches.

No adversarial agents.We do not model intentionally mislead-
ing agents, which would favor robust estimators (median, trimmed
mean) over weighted averages.

These limitations motivate future work on (1) structured and
non-Gaussian correlation models, (2) iterative debate dynamics,
(3) robustness to adversarial agents, and (4) learning evidence qual-
ity mappings from real LLM outputs.

7 CONCLUSION
We presented a systematic study of disagreement resolution mecha-
nisms for multi-agent LLM systems, addressing key methodological
issues from prior work: paired evaluation on shared datasets, in-
formative evidence scores, multi-seed replication with uncertainty
quantification, and a variance degradation metric that properly
captures correlation-induced performance loss. Evidence-weighted
aggregation achieves the lowest error (MAE = 0.178 ± 0.102) and
highest relative efficiency (0.402) across all conditions tested. Our
results highlight that reducing inter-agent correlation is far more
impactful than optimizing the aggregation mechanism, and provide
principled baselines for designing robust consensus mechanisms in
production multi-agent systems.
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