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ABSTRACT
Trace-first development is central to improving tool-usingAI agents,
yet current practices vary widely in logging standards, sanitization,
and leakage prevention. We formalize the trace protocol problem
along four dimensions—completeness, sanitization, schema com-
pliance, and leakage detection—and evaluate five protocol regimes
of increasing maturity. Through simulation experiments with 200
tasks, 10 agents, and 5 traces per task (1,000 traces total, seed 42),
we show that the full protocol regime achieves a reproducibility
score of 0.979 compared to 0.390 for no-protocol baselines, while
reducing effective information leakage by 90%. Using 100 bootstrap
repetitions, we demonstrate that even 5% train-test leakage causes
measurable ranking disruption (2.5% pairwise flip rate, 𝜌 = 0.983)
in agent benchmarks. All tables and figures in this paper are auto-
generated from the executable pipeline, ensuring end-to-end repro-
ducibility of results.
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1 INTRODUCTION
The development of tool-using AI agents increasingly relies on
trace data—records of prompts, tool calls, arguments, outputs, and
outcomes—for training, debugging, and evaluation [6, 8]. However,
the field lacks standardized protocols for collecting, filtering, and
evaluating these traces. This gap leads to irreproducible results,
unfair benchmark comparisons, and vulnerability to information
leakage [3].

As Xu et al. [6] note, establishing reproducible protocols for trace
collection, filtering, and leakage-robust evaluation remains an open
research problem. This paper addresses this challenge through:

(1) A formal framework for trace protocol evaluation along
four dimensions.

(2) Five protocol regimes representing increasing standardiza-
tion maturity.

(3) Quantitative evidence that full protocols achieve 2.5× higher
reproducibility than ad-hoc approaches.

(4) Analysis showing that leakage detection reduces effective
contamination by 90%.

(5) A completeness-level experiment demonstrating the rela-
tionship between logging fidelity and schema compliance.

Revision note. This revision addresses prior review feedback by:
(a) implementing multiple traces per task as claimed; (b) generating
shared base traces across protocol regimes to avoid confounding;
(c) guaranteeing semantic step-type coverage in all traces regard-
less of length; (d) modeling realistic content duplication; (e) using
bootstrap repetitions for benchmark reliability; (f) auto-generating
all tables from data; and (g) adding a limitations section.

2 RELATEDWORK
Reproducibility in machine learning has been studied extensively [2,
5]. Model cards [4] established documentation standards for ML
models. In the agent domain, SWE-agent [7] demonstrated the
importance of complete interaction traces for software engineer-
ing tasks. Kapoor et al. [3] highlighted evaluation pitfalls in agent
benchmarks. Gebru et al. [1] proposed datasheets for datasets, estab-
lishing precedent for structured documentation of data provenance
that directly informs our trace schema requirements.

Our work extends these efforts by providing a quantitative frame-
work specifically for agent trace protocols and leakage-robust eval-
uation.

3 TRACE PROTOCOL FRAMEWORK
3.1 Trace Structure
An agent trace 𝑇 = (𝑠1, 𝑠2, . . . , 𝑠𝐿) consists of 𝐿 steps, where each
step 𝑠𝑖 contains a type (prompt, tool_call, tool_output, reasoning,
outcome), content, and metadata. A complete trace captures all
steps; incomplete traces omit steps with probability 1 − 𝑐 where
𝑐 is the completeness parameter. Every trace is guaranteed to in-
clude the four required semantic step types—prompt, tool_call,
tool_output, and outcome—regardless of trace length, ensuring
schema compliance is not an artifact of step-type cycling.

3.2 Protocol Regimes
We define five regimes of increasing maturity:

(1) No Protocol: Ad-hoc logging (𝑐 = 0.3), no sanitization, no
validation.

(2) Partial Logging: Structured format (𝑐 = 0.6), deduplication
only.

(3) Full Logging: Complete schema (𝑐 = 0.95), schema valida-
tion.

(4) Full + Sanitized: Adds PII/secret removal (95% effective-
ness).

(5) Full Protocol: Adds leakage detection (90% detection rate),
𝑐 = 0.98.

3.3 Shared Base Traces
To ensure fair comparison across protocol regimes, we generate a
single set of base traces (with full completeness, no sanitization)
and then apply each protocol’s transformations separately. This
design avoids confounding protocol effects with sampling noise
from regenerating different random traces per regime.

3.4 Realistic Content Duplication
We model content duplication with a configurable probability (𝑝 =

0.15): each trace step has a 15% chance of reusing a content hash
from a previous step, making the deduplication metric meaningful.
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Without deduplication, duplicate content inflates apparent trace
volume without adding information.

3.5 Reproducibility Score
We define a composite reproducibility score:

𝑅 = 0.4 · 𝑐 + 0.3 · (1 − ℓ𝑒 ) + 0.2 · 𝑠 + 0.1 · 𝑣 (1)

where 𝑐 is completeness, ℓ𝑒 is effective leakage rate, 𝑠 is sanitization
coverage, and 𝑣 is schema compliance rate. The weights reflect
domain judgment that completeness is most critical, followed by
leakage control, sanitization, and structural compliance.

4 EXPERIMENTS
We simulate trace collection for 200 tasks across 10 agents with 5
traces per task (1,000 traces total), using seed 42 for reproducibility.
All tables below are auto-generated from the experimental data
files.

4.1 Protocol Regime Comparison

Table 1: Performance metrics across protocol regimes (leak-
age rate = 0.1). All values are auto-generated from the exper-
imental pipeline.

Regime Repro. Complete. Eff. Leak. Schema Sanit.

No Protocol 0.390 0.300 0.102 0.000 0.000
Partial Log 0.508 0.597 0.102 0.000 0.000
Full Log 0.751 0.953 0.102 1.000 0.000
Full+Sanit. 0.940 0.949 0.102 1.000 0.952
Full Protocol 0.979 0.981 0.010 1.000 0.951

Table 1 shows that the full protocol achieves a reproducibility
score of 0.979, a 2.5× improvement over the no-protocol baseline
(0.390). Leakage detection provides the largest marginal gain, re-
ducing effective leakage from ∼0.10 to 0.010. Schema compliance
reaches 1.0 for all regimes with schema validation enabled (full
logging and above), while no-protocol and partial logging regimes
have 0 schema compliance because validation is not applied. San-
itization coverage reaches 0.951 for both full+sanitized and full
protocol regimes.

The reproducibility score formula is consistent with the table
values. For example, the full protocol: 𝑅 = 0.4 × 0.981 + 0.3 × (1 −
0.010)+0.2×0.951+0.1×1.000 = 0.392+0.297+0.190+0.100 = 0.979.

Figure 1: Comparison of protocol regimes across reproducibil-
ity, completeness, leakage, and schema compliance.

Figure 2: Effective leakage rate under no-protocol vs full
protocol regimes across varying raw leakage rates.

4.2 Leakage Impact on Benchmarks
Figure 2 confirms that the full protocol reduces effective leakage
by approximately 90% across all raw leakage levels, while the no-
protocol regime passes leakage through unmitigated.

4.3 Benchmark Reliability

Table 2: Benchmark reliability metrics across leakage rates
(100 bootstrap repetitions, mean ± std).

Leakage Rate Rank Corr. Disruption Score Inflation

0.00 1.000±0.000 0.000±0.000 0.0000±0.0000
0.05 0.983±0.024 0.025±0.029 0.0201±0.0033
0.10 0.962±0.034 0.051±0.035 0.0394±0.0065
0.20 0.920±0.061 0.090±0.046 0.0802±0.0153
0.30 0.883±0.074 0.120±0.054 0.1163±0.0237
0.50 0.695±0.171 0.229±0.081 0.1877±0.0291

Figure 3: Benchmark ranking stability, disruption, and score
inflation as a function of leakage rate (error bars from 100
bootstrap runs).

Table 2 and Figure 3 demonstrate that even 5% leakage causes
measurable degradation: rank correlation drops to 0.983, pairwise
ranking disruption reaches 2.5%, and score inflation averages 0.020.
At 50% leakage, ranking disruption reaches 22.9% and rank correla-
tion drops to 0.695. These results are averaged over 100 bootstrap
repetitions, providing stable estimates with quantified uncertainty.
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4.4 Trace Length Impact

Figure 4: Reproducibility score and schema compliance vs
trace length under the full protocol.

Figure 4 shows that reproducibility remains high (> 0.968) across
all trace lengths under the full protocol. Short traces (length 5)
achieve 0.915 schema compliance because all four required step
types are guaranteed, though the reduced number of steps provides
less redundancy. Traces of length 10 and above achieve ≥0.997
schema compliance.

4.5 Completeness Level Impact

Figure 5: Reproducibility score and schema compliance as
a function of target completeness level (full protocol other-
wise).

Figure 5 reveals a strong relationship between completeness
and schema compliance. At 30% completeness, only 27.3% of traces
contain all required step types, yielding a reproducibility score of
0.635. At 70% completeness, schema compliance rises to 95.6% and
reproducibility reaches 0.864. Full completeness (𝑐 = 1.0) achieves
0.987 reproducibility.

4.6 Deduplication Effectiveness
With a 15% duplicate probability, the no-protocol regime (which
lacks deduplication) retains all content including duplicates (unique
ratio = 1.0, misleadingly complete), while all deduplication-enabled
regimes correctly identify and report a unique content ratio of
approximately 0.857, indicating that about 14.3% of content hashes
are duplicates.

5 DISCUSSION
Our results provide quantitative justification for adopting standard-
ized trace protocols. The full protocol regime achieves near-perfect

Figure 6: Unique content ratio across protocol regimes with
realistic duplication (15% duplicate probability).

reproducibility scores while reducing information leakage by an
order of magnitude. Key findings include:

• Completeness alone is insufficient—sanitization and leak-
age detection are critical for reliable evaluation.

• Leakage detection provides the highest marginal value
among all protocol components (reducing effective leakage
from 0.102 to 0.010).

• Schema validation ensures structural consistency; with
shared base traces, all regimes that apply validation achieve
1.0 compliance.

• Longer traces maintain high reproducibility under the full
protocol, and short traces (length 5) still achieve meaningful
schema compliance (0.915) because required step types are
guaranteed.

• Even 5% leakage causes 2.5% pairwise ranking disruption
and 0.020 score inflation, motivating mandatory leakage
detection.

• Realistic content duplication modeling reveals that approx-
imately 14% of content is duplicate when duplication prob-
ability is 15%.

Practical recommendations: (1) Adopt structured schemas with
required fields for all trace step types; (2) Implement automated
leakage detection comparing trace content against held-out test
sets; (3) Apply sanitization to remove PII before any trace sharing;
(4) Validate schema compliance as a prerequisite for benchmark
submission; (5) Apply deduplication to avoid inflated trace volumes.

6 LIMITATIONS
Several limitations of this work should be noted:

• Simulation-only evaluation. All experiments use syn-
thetic trace generation rather than real agent interaction
traces. While simulation enables controlled comparisons,
real-world traces exhibit more complex failure modes (e.g.,
partial tool outputs, nested calls, timeout-induced incom-
pleteness) not captured here.

• Heuristic weight selection. The weights in the repro-
ducibility score formula (0.4, 0.3, 0.2, 0.1) reflect domain
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judgment rather than empirical optimization. Different ap-
plication contexts may warrant different weighting.

• Fixed leakage detection rate. Leakage detection is mod-
eled as a fixed 90% reduction. Real detection systems have
varying recall depending on leakage type (verbatim memo-
rization vs. paraphrasing vs. indirect contamination).

• Simplified sanitization model. Sanitization is modeled
as independent per-step with 95% effectiveness. Real PII de-
tection depends on content type and context, with varying
false positive/negative rates.

• Content duplication model. Duplication is modeled via
hash reuse with a fixed probability. Real duplication pat-
terns are more structured (e.g., repeated tool calls to the
same API, template-based responses).

• No real trace schema implementation. This work eval-
uates protocol adequacy via simulation metrics but does
not provide a reference implementation of trace collection
middleware or a standardized trace format specification.

7 CONCLUSION
We established a quantitative framework for evaluating agent trace
protocols and demonstrated that full standardization achieves 2.5×
higher reproducibility scores than ad-hoc approaches. Our leakage
analysis shows that even 5% contamination produces measurable
ranking disruption (2.5% pairwise flip rate), motivating mandatory
leakage detection in evaluation pipelines. The completeness ex-
periment reveals that schema compliance degrades sharply below

70% completeness, highlighting the importance of comprehensive
logging. All results are auto-generated from the executable pipeline,
with tables produced directly from experimental data files, ensuring
end-to-end artifact integrity. These findings support the adoption of
standardized, reproducible trace protocols as a community standard
for agent system research.
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