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ABSTRACT

Estimating reachable sets in high-dimensional spaces is fundamen-
tal to verifying generative models and dialogue systems, yet Monte
Carlo approaches suffer from sample complexity that scales expo-
nentially with dimension. We compare five estimation algorithms—
y-neighbourhood union, PAC-inflated neighbourhood, adaptive
boundary refinement, PCA-based dimensionality reduction, and
data-adaptive kNN boundary learning—across dimensions 2 to 100
using a balanced evaluation protocol that ensures meaningful met-
rics at all dimensions. Ground truth is consistently defined as the
y-expanded reachable set Ry, and all results report mean + standard
deviation over 5 independent trials.

Our experiments reveal three distinct regimes: (i) at low di-
mensions (d < 5), all methods achieve F1 > 0.52; (ii) at moder-
ate dimensions (d = 10-20), only dimensionality reduction (F1
~ 0.68) and learned boundary (F1 ~ 0.92) remain viable; (iii) be-
yond d = 50, neighbourhood-based methods collapse to F1=0
while learned boundary maintains F1 = 0.89. On low-intrinsic-
dimension sets (a k=3 subspace embedded in Rd), all methods re-
cover strong performance even at d=100, with PAC-inflated and
y-neighbourhood both reaching F1~1.0. These results quantify the
fundamental gap between theoretical PAC bounds (10!+ samples)
and practical estimation (10* samples suffice at d=5), and demon-
strate that structural assumptions—low intrinsic dimension or data-
adaptive thresholds—are essential for high-dimensional reachable
set estimation.
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1 INTRODUCTION

Reachable set estimation—determining which states or outputs a
system can achieve—is a cornerstone of formal verification [1].
For generative models in dialogue systems, Cheng et al. [3] intro-
duced Monte Carlo algorithms with PAC guarantees for estimating
reachable and controllable sets. However, they identify a critical
limitation: the sample complexity depends on the covering number
of the y-quantized measurement space, which grows as (2/ y)d for
d-dimensional spaces.

This exponential scaling makes direct PAC estimation imprac-
tical for high-dimensional settings. Prior work on neural reacha-
bility [2] and scenario optimization [4] has explored alternatives,
but the fundamental tension between precision, dimension, and
computational cost remains unresolved.

We address this gap through four contributions: (1) a corrected
evaluation protocol using balanced positive/negative sampling with

ground truth defined consistently as Ry; (2) five estimation algo-
rithms including a data-adaptive kNN boundary learner; (3) a low-
intrinsic-dimension experiment demonstrating when dimension-
ality reduction succeeds and fails; and (4) multi-trial experiments
with uncertainty quantification across dimensions 2-100.

2 PROBLEM FORMULATION

Given a system with measurement-value space X C Rd, the y-
expanded reachable set is:

Ry={xeX:3JyeR |x-yll <y} (1)

where R is the true reachable set. All estimators target R}, and all

evaluation is performed against R, membership as ground truth.
The PAC estimation problem asks for R such that Pr [Ry © RcC

Ray] 2 1-6 using N samples [5]. The classical PAC bound requires:

d
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Evaluation protocol. Prior implementations sampled test points
uniformly from a hypercube, causing the fraction of positives to
vanish exponentially with d (e.g., 0 out of 500 positives for d > 10).
We instead generate balanced evaluation sets: 250 positives sampled
from inside Ry, and 250 negatives sampled from just outside Ry
(a thin annular shell), ensuring that precision, recall, and F1 are
informative at all dimensions.

3 ALGORITHMS
3.1 y-Neighbourhood Union

Classifies a test point x as reachable if min; ||x —s;|| < y for samples
{si}L; drawn from R. Implemented via scipy.spatial.cKDTree
for O(nlogn) construction and O(log n) per query.

3.2 PAC-Inflated Neighbourhood

Inflates y by €, = y+/dlog(n/5)/n to provide a (1 — §)-confidence
inclusion guarantee:

R={x:min|lx - sill <y+en} ®)
1

This trades precision for coverage, ensuring high recall at the cost
of increased false positives.

3.3 Adaptive Boundary Refinement

A two-phase method: (1) coarse classification via y-neighbourhood;
(2) for points in the boundary region [)7/ 37)/], refinement using

mean k-nearest-neighbour distance with threshold 1.2y.



Table 1: Mean F1 (+ std) vs. dimension for the sphere (y=0.2,
n=5000).

Algorithm d=2 d=5 d=10 d=50 d=100
y-Nbr .99+.00 .52+.03 .00+.00 .00+.00 .00+.00
PAC-Inflated .98+.01 .64+.03 .00+.00 .00+.00 .00+.00
Adaptive 97+£.01 .22+£.03 .00£.00 .00£.00 .00+.00
DimRed .99+.00 .70+.01 .68+.00 .67+.00 .67+.00
Learned Bdy .82+.02 .86+.02 .92+.01 .89+.01 .93+.02

3.4 Dimensionality-Reduced MC (DimRed)

Projects samples and test points to k < d dimensions via PCA. The
projection error is compensated by inflating y:

4)

where o; are singular values. When intrinsic dimension equals k,
the residual variance is near zero and y’ ~ y.

3.5 Learned Boundary (kNN Density)

A data-adaptive method that calibrates its threshold from the within-
sample k-nearest-neighbour distances. Let 795 be the 95th percentile
of kNN distances among the training samples. A test point is classi-
fied reachable if its kNN distance is at most 795(1 + y). This avoids
the need for any explicit covering number computation.

4 EXPERIMENTAL SETUP

All experiments use seed 42, 5 independent trials, and balanced
evaluation sets of 500 points (250 per class). We use a unit ball
(Ilx]l < 1) as the ground-truth reachable set R, so Ry is the ball of
radius 1 + y. Distances are computed via cKDTree for scalability.

Experiments. (A) F1 vs. dimension (d € {2,5,10,20, 50,100},
y=0.2, n=5000). (B)F1vs.y (y € {0.5,0.3,0.2,0.1,0.05}, d=10, n=5000).
(C) F1 vs. sample budget (n € {50,...,10000}, d=5, y=0.3). (D) F1
vs. ambient dimension for a low-rank set (intrinsic k=3 subspace
embedded in R, y=0.3).

5 RESULTS

5.1 Dimension Scaling (Experiment A)

Table 1 and Figure 1 show that neighbourhood-based methods
(y-Nbr, PAC-Inflated, Adaptive) collapse to F1=0 beyond d=10, con-
firming the curse of dimensionality for covering-number-dependent
approaches. In contrast, Learned Boundary maintains F1 > 0.82
across all dimensions, while DimRed stabilises near F1 ~ 0.67-0.68
for d > 10.

5.2 Resolution Sensitivity (Experiment B)

Figure 2 shows that at d=10, only DimRed (F1 0.56-0.71) and
Learned Boundary (F1 > 0.91) produce useful estimates across
the full y range. Learned Boundary is remarkably stable: its F1
ranges from 0.92 at y=0.05 to 0.97 at y=0.5. The y-neighbourhood
estimator achieves F1=0.11 only at y=0.5 and is otherwise at zero.

Anon.

Estimation Quality vs. Dimensionality (Sphere)
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Figure 1: F1 score vs. dimensionality (sphere, y=0.2). Error
bars show +1 std over 5 trials. Neighbourhood-based methods
fail beyond d=5; DimRed and Learned Boundary are robust.
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Figure 2: F1 score vs. resolution y at d=10. Learned Boundary
achieves F1 > 0.91 across all y; DimRed achieves 0.56-0.71.
Neighbourhood-based methods remain near zero.

5.3 Sample Complexity (Experiment C)

Figure 3 reveals clear sample-efficiency ordering at d=5. DimRed
and Learned Boundary are strong even at n=50 (F1 > 0.70), since
they rely on structural compression rather than brute-force cover-
ing. y-Neighbourhood and PAC-Inflated show clear scaling from
F1=0.04 (n=50) to F1=0.78 and 0.84 (n=10,000) respectively, con-
firming that sample budget is the primary bottleneck for covering-
number methods.

Figure 4 visualises the theoretical PAC bound (Eq. 2), which ex-
ceeds 101 for d > 10—far beyond any practical budget. The gap
between theoretical requirements and observed practical perfor-
mance (10* samples suffice at d=5) motivates relaxed guarantee
frameworks.

5.4 Low-Intrinsic-Dimension Sets (Experiment
D)

Table 2 and Figure 5 demonstrate the critical role of intrinsic dimen-

sionality. When the reachable set lies in a k=3 dimensional subspace,
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Estimation Quality vs. Sample Budget (d =10, y=0.2)
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Figure 3: F1 vs. sample budget at d=5, y=0.3. All methods im-
prove with samples; PAC-Inflated reaches F1=0.84 at n=10,000.
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Figure 4: Theoretical PAC sample complexity (log,, scale) vs.

dimension and y. Bounds exceed 10 for d > 10.
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Figure 5: DimRed comparison: (a) full-rank sphere vs. (b) k=3
low-rank set. On the low-rank set, y-Neighbourhood recovers
to F1~1.0 at d=100 since PCA discovers the true 3-d subspace.

all neighbourhood-based methods recover excellent performance
even at d=100: samples concentrate in the 3-d subspace, so the
effective covering number scales as (2/y)* rather than (2/y
DimRed also improves dramatically (F1 from 0.67 on the sphere to

)100.

Table 2: Mean F1 on the low-rank set (k=3, y=0.3, n=5000).

Algorithm d=5 d=10 d=50 d=100

y-Nbr .98 .96 1.00 1.00
PAC-Inflated .99 1.00 1.00 1.00
Adaptive .98 1.00 1.00 1.00
DimRed .78 .87 .97 .99

Learned Bdy .66 .26 1.00 1.00

0.99 on the low-rank set at d=100) because PCA captures nearly all
variance in 3 components.

6 DISCUSSION

Corrected evaluation reveals true performance landscape. By using
balanced evaluation sets with explicit positive and negative samples
drawn near the boundary of Ry, we eliminate the artefact where
uniform hypercube sampling produces zero positives for d > 10,
rendering prior F1 measurements uninformative.

Three regimes of estimation difficulty. Our results identify three
clear regimes: (i) low-d (< 5), where covering-based methods work;
(ii) moderate-d (10-20), where only structural methods (DimRed,
Learned Boundary) are viable; (iii) high-d (> 50), where Learned
Boundary is the only reliable estimator on full-rank sets.

Intrinsic dimension is the key structural assumption. The low-rank
experiment shows that the ambient dimension is not the funda-
mental barrier—intrinsic dimension is. When the reachable set
concentrates on a low-dimensional manifold, all methods recover.
This motivates developing estimators that can automatically detect
and exploit manifold structure.

Data-adaptive methods bypass covering-number barriers. The
Learned Boundary estimator, which calibrates its threshold from
within-sample statistics, achieves consistently high F1 without any
covering-number computation. Its success suggests that for practi-
cal verification, data-driven approaches may be preferable to PAC-
style guarantees in high dimensions.

Limitations. Our study uses synthetic reachable sets (balls, low-
rank embeddings). Real reachable sets from generative models may
have more complex topology. The Learned Boundary estimator
lacks formal guarantees, and the PAC-Inflated method’s inflation
grows with Vd, limiting its precision in high dimensions.

7 CONCLUSION

We presented a systematic comparison of five reachable set esti-
mation algorithms across dimensions 2-100 using a corrected bal-
anced evaluation protocol with consistent R}, ground truth. Three
key findings emerge: (1) neighbourhood-based methods fail beyond
d =~ 5-10 on full-rank sets due to exponential covering-number
growth; (2) data-adaptive learned boundary estimation maintains F1
> 0.82 up to d=100 by calibrating thresholds from sample statistics;
(3) low intrinsic dimensionality restores performance for all meth-
ods, with y-neighbourhood achieving F1x1.0 at =100 when the
reachable set lies in a 3-d subspace. These results motivate hybrid



frameworks that combine formal PAC guarantees with adaptive,
structure-exploiting estimation.
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