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ABSTRACT
World models that reconstruct observations are forced to retain all
perceptual detail, including task-irrelevant information, leading to
representations that scale with observation complexity rather than
world complexity. We propose the Bisimulation-Grounded World
Model (BGWM), which replaces reconstruction with a bisimula-
tion distance regression objective that trains encoders to produce
compact abstract states capturing only behaviorally relevant struc-
ture. BGWM combines a forward prediction loss in latent space,
a pairwise bisimulation distance loss that enforces behavioral dis-
tance matching, and a variational information bottleneck for com-
pression. We evaluate BGWM against reconstruction-based and
forward-prediction-only baselines across three synthetic domains
with controlled relevant and irrelevant state dimensions, using
3 random seeds per condition with shared training data for fair
comparison. On the grid navigation domain, BGWM achieves a
mean abstraction ratio of 0.807 ± 0.097 compared to 1.871 ± 0.059
for reconstruction, a 2.3× improvement. A linear probe analysis
shows that BGWM encodes significantly less irrelevant informa-
tion (𝑅2 = 0.438) than reconstruction (𝑅2 = 0.830) while retaining
relevant structure. We also find that BGWM does not improve over
baselines on the linear dynamics domain, which we analyze as a
limitation of the pairwise distance approximation to the true bisimu-
lation metric. Cross-domain transfer experiments with four encoder
baselines (BGWM, reconstruction, forward-only, and random) show
that the BGWM encoder achieves 4.0–5.1× error reduction when
adapting only the dynamics model, evaluated on held-out data.
These results demonstrate that bisimulation-grounded learning
produces abstract representations that discard task-irrelevant detail
in nonlinear domains, while revealing important failure modes in
linear settings.

1 INTRODUCTION
Human mental models of the world operate on compact, abstract
representations that discard perceptual detail irrelevant to the task
at hand [15]. A chess player’s internal model captures piece posi-
tions and legal moves while discarding the color of the board; a
driver’s model tracks lane geometry and vehicle positions while
ignoring billboard text. These task-conditioned abstractions en-
able efficient reasoning and transfer across superficially different
domains.

Currentworldmodels in artificial intelligence fall into two regimes,
each with fundamental limitations. Pixel-reconstructive models,
such as the Dreamer family [9, 10], learn latent representations
by requiring an observation decoder. Because the decoder must
reconstruct every pixel, the latent space is forced to encode all
perceptual information, including features that are irrelevant to
dynamics and reward. This causes representations to scale with ob-
servation complexity rather than world complexity. Language-only
world models provide natural abstraction through discrete tokens

but cannot directly represent continuous physics, spatial layouts,
or non-linguistic signals.

The core challenge is to learn world-model representations that
are compact and abstract like language but grounded in contin-
uous perception. Two sub-problems arise: (1) defining a formal
abstraction criterion that discards irrelevant detail while retaining
task-relevant structure, and (2) scaling such representations across
qualitatively different domains without domain-specific engineer-
ing.

We address these sub-problems with the Bisimulation-Grounded
World Model (BGWM), which builds on bisimulation theory from
the state abstraction literature [1, 6, 11]. Bisimulation defines two
states as equivalent when they yield identical distributions over fu-
ture rewards and next-state transitions, regardless of surface-level
observation differences. We operationalize this principle through a
pairwise distance regression loss that enforces latent distances to
match behavioral distances, combined with a variational informa-
tion bottleneck [3, 13] and a forward prediction loss in the abstract
space. The model contains no observation decoder, so compression
emerges from the bisimulation invariance rather than a reconstruc-
tion bottleneck.

Our experimental evaluation addresses key methodological con-
cerns: all methods train on identical shared datasets (eliminating
data confounds), results are reported with mean and standard de-
viation across 3 seeds, and we introduce a scale-invariant linear
probe metric alongside the sensitivity-based abstraction ratio. We
also provide transfer baselines for all encoder types and evaluate
on held-out data.

1.1 Related Work
State Abstraction Theory. Bisimulation metrics [6] and MDP ho-

momorphisms [11] provide the mathematical foundation for defin-
ing when two states are behaviorally equivalent. Abel et al. [1]
extended this to approximate abstractions with bounded value loss.
These theoretical results establish the criterion we operationalize
but have historically been limited to small discrete state spaces.

Bisimulation-Based Representation Learning. Zhang et al. [16]
introduced Deep Bisimulation for Control (DBC), which learns
representations where latent distance corresponds to behavioral
similarity. Gelada et al. [7] proposed DeepMDP with similar goals.
Castro [4] developed scalable bisimulation computation methods,
and Agarwal et al. [2] applied contrastive behavioral similarity
embeddings for generalization. These methods demonstrate the
effectiveness of bisimulation for single-domain settings but have
not been evaluated for cross-domain transfer with proper baselines.

Information-Theoretic Representation Learning. The Information
Bottleneck [13] formalizes the compression-relevance trade-off.
Alemi et al. [3] introduced the variational information bottleneck
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for deep networks. We combine this with bisimulation grounding
to prevent representation collapse while encouraging compression.

World Models and Contrastive Learning. Modern world mod-
els [9, 10] achieve strong performance through observation recon-
struction. Contrastive learning methods [5, 8] learn representations
without reconstruction but optimize for general-purpose features
rather than task-relevant abstractions. Discrete tokenization ap-
proaches [14] force compression through codebooks but target
reconstruction fidelity. Our work combines bisimulation distance
regression (task-relevant invariance) with information bottleneck
(explicit compression) in a decoder-free architecture.

2 METHODS
2.1 Problem Formulation
Consider an environment with state 𝑠 = (𝑠rel, 𝑠irr) ∈ S where 𝑠rel
affects dynamics and reward while 𝑠irr is dynamically independent.
Observations 𝑜 = 𝑔(𝑠) are generated by a nonlinear mixing function
that entangles both components. The goal is to learn an encoder
𝐸 : O → Z such that the abstract state 𝑧 = 𝐸 (𝑜) retains information
about 𝑠rel and discards information about 𝑠irr.

2.2 Architecture
The BGWM architecture consists of three components:

Modality Encoder. A three-layer MLPwith LayerNorm and GELU
activations maps observations 𝑜 ∈ R32 into embeddings ℎ ∈ R64.

Abstraction Bottleneck. A variational layer compresses embed-
dings into abstract states 𝑧 ∈ R𝑑 (default 𝑑 = 8). During training,
stochastic noise from a learned variance acts as an implicit informa-
tion bottleneck, with KL divergence from a standard normal prior
providing the compression signal.

Latent Dynamics Model. A two-layer MLP predicts the next ab-
stract state 𝑧𝑡+1 and reward 𝑟𝑡 from (𝑧𝑡 , 𝑎𝑡 ).

2.3 Training Objective
The total loss combines four terms:

L = Lfwd + 𝛼Lbisim + 𝜆Lreward + 𝛽LKL (1)

Forward Prediction Loss. MSE between the predicted next la-
tent state and the encoded next observation: Lfwd = ∥𝑧𝑡+1 −
sg[𝐸 (𝑜𝑡+1)] ∥2, where sg[·] denotes stop-gradient.

Bisimulation Distance Loss. For each pair (𝑖, 𝑗) in a batch, the
behavioral distance is 𝑑behav (𝑖, 𝑗) = |𝑟𝑖 − 𝑟 𝑗 | + 𝛾 ∥𝑧′

𝑖
− 𝑧′

𝑗
∥2. The

loss enforces ∥𝑧𝑖 − 𝑧 𝑗 ∥2 ≈ 𝑑behav (𝑖, 𝑗) via smooth 𝐿1 loss scaled by
temperature 𝜏 = 0.1. We note that this is a pairwise distance regres-
sion rather than an InfoNCE-style contrastive loss; the bisimulation
target uses single-sample next-state distances as an approximation
to the Wasserstein distance between transition distributions.

Reward Prediction Loss. MSE on scalar reward: Lreward = ∥𝑟𝑡 −
𝑟𝑡 ∥2.

Information Bottleneck Loss. LKL = KL(𝑞(𝑧 |𝑜)∥N (0, 𝐼 )).

Hyperparameters: 𝛼 = 1.0, 𝜆 = 0.5, 𝛽 = 0.01, 𝛾 = 0.99. We train
for 40 epochs with AdamW [12] (learning rate 5 × 10−4, weight
decay 10−5) and cosine annealing.

2.4 Baselines
Reconstruction World Model. Standard autoencoder with MSE

reconstruction loss plus forward prediction and reward losses. The
decoder forces the latent to retain all observation information.

Forward-OnlyWorldModel. Same encoder architecture as BGWM
but trained with only forward prediction and reward losses (no
bisimulation, no stochastic bottleneck, deterministic encoder). This
isolates the contribution of the bisimulation loss.

2.5 Evaluation Metrics
Abstraction Ratio (𝜌). For each base state, we independently

perturb the relevant and irrelevant dimensions by 𝛿 ∼ N(0, 0.52𝐼 )
and measure the resulting change in latent representation:

𝜌 =
Irrelevant Sensitivity
Relevant Sensitivity

(2)

Lower values indicate better abstraction. However, this metric is
scale-sensitive: a model with uniformly low sensitivity achieves a
good ratio without necessarily encoding useful information.

Linear Probe 𝑅2 (Scale-Invariant). We fit Ridge regression from 𝑧

to 𝑠rel and from 𝑧 to 𝑠irr, reporting 𝑅2 for each. An ideal abstraction
achieves high 𝑅2rel and low 𝑅2irr. Unlike the abstraction ratio, this
metric is invariant to the scale of the latent representation.

Normalized Forward Prediction Error. Multi-step rollout in latent
space compared to the encoder output at each future step, normal-
ized by the standard deviation of the latent space to remove scale
confounds.

Effective Rank. The exponential of the entropy of normalized
singular values of the latent representation matrix.

Cross-Domain Transfer. We freeze the encoder from a source
domain and train only a new dynamics model on a target domain,
measuring adaptation speed on a held-out validation set (70/30
train/val split). We compare four encoder sources: BGWM, recon-
struction, forward-only, and random (untrained) encoders.

2.6 Experimental Controls
Addressing methodological concerns from prior work, we imple-
ment three key controls:

(1) Shared datasets. For each seed, one dataset is collected
and used by all three methods, eliminating confounds from
different training trajectories.

(2) Multi-seed evaluation. All results are reported as mean
± standard deviation across 3 random seeds.

(3) Run metadata. All experiments save seed values, configu-
ration, library versions, and timestamps for reproducibility.
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3 EXPERIMENTAL SETUP
3.1 Synthetic Environments
We construct three environments with controlled relevant and
irrelevant state dimensions:

• Linear Dynamics: 4 relevant dimensions (linear system
𝑠′ = 𝐴𝑠 +𝐵𝑎+𝜖) and 4 irrelevant dimensions (random walk).
Observation dimension: 32.

• Nonlinear Pendulum: 2 relevant dimensions (angle and
angular velocity with ¤𝜔 = − sin𝜃 + 𝑎) and 6 irrelevant
dimensions (sinusoidal drift). Observation dimension: 32.

• GridNavigation: 2 relevant dimensions (positionwith soft-
discretized dynamics) and 6 irrelevant dimensions (random
perturbation). Observation dimension: 32.

All environments use a fixed random two-layer MLP as the obser-
vation function, entangling relevant and irrelevant state dimensions.
We collect 80 trajectories of 30 steps each with random actions per
seed.

Reward Functions. Each domain uses a reward function that
depends only on the relevant state dimensions 𝑠rel, ensuring the
bisimulation-theoretic separation is well-defined:

• Linear Dynamics: 𝑟 = −∥𝑠rel∥2 (negative squared norm,
encouraging state regulation).

• Nonlinear Pendulum: 𝑟 = −|𝜃𝑡+1 | (negative absolute an-
gle, encouraging upright balance).

• Grid Navigation: 𝑟 = −∥𝑠rel − 𝑠goal∥2 where 𝑠goal = (1, 1)
(negative squared distance to goal).

Observation Function. Each domain uses its own fixed random
two-layer MLP (seeded with domain seed +1000) to map state to
observation. The observation functions are not shared across do-
mains, so cross-domain transfer requires the encoder to extract
domain-invariant structure despite different observation mappings.

Implementation Details. Batch size is 256. The bisimulation dis-
tance loss computes all 𝐵2 = 65,536 pairwise distances within each
batch (no subsampling). The bisimulation target 𝑑behav (𝑖, 𝑗) is com-
puted with stop-gradient on both the next-state encodings 𝑧′

𝑖
, 𝑧′

𝑗

and the reward predictions, providing a semi-gradient update to
the encoder. Training uses gradient clipping (max norm 1.0) for
BGWM and forward-only models.

Figure 1 provides an overview of the complete experimental
framework and the relationships between its components.

4 RESULTS
4.1 Abstraction Quality
Table 1 presents the abstraction quality metrics across all three
domains. Results are reported as mean ± standard deviation across
3 seeds.

BGWM achieves the best abstraction ratio on grid navigation
(0.807 ± 0.097 vs. 1.871 ± 0.059 for reconstruction, a 2.3× improve-
ment) and outperforms reconstruction on the nonlinear pendulum
(1.734 vs. 1.950). However, on the linear dynamics domain, BGWM
performs worst (1.958), which we discuss in Section 4.9.

The forward-only baseline achieves competitive ratios but at
much lower absolute sensitivity (relevant sensitivity 0.54–0.68 vs.

Table 1: Abstraction ratio 𝜌 (lower is better) across domains.
All methods trained on shared datasets per seed. Bold indi-
cates best per domain.

Domain Method 𝜌 (mean ± std)

Linear Dyn.
BGWM (Ours) 1.958 ± 0.105
Reconstruction 1.349 ± 0.057
Forward-Only 1.329 ± 0.127

Nonlinear Pend.
BGWM (Ours) 1.734 ± 0.300
Reconstruction 1.950 ± 0.130
Forward-Only 1.242 ± 0.110

Grid Nav.
BGWM (Ours) 0.807 ± 0.097
Reconstruction 1.871 ± 0.059
Forward-Only 0.883 ± 0.055

Table 2: Linear probe 𝑅2 for relevant and irrelevant state re-
covery. Higher 𝑅2rel and lower 𝑅2irr indicate better abstraction.
Bold indicates best 𝑅2irr (most irrelevant suppression) per do-
main.

Domain Method 𝑅2
rel 𝑅2

irr

Linear
BGWM 0.220 ± 0.045 0.649 ± 0.066
Reconstruction 0.742 ± 0.001 0.936 ± 0.011
Forward-Only 0.287 ± 0.080 0.763 ± 0.061

Nonlinear
BGWM 0.634 ± 0.021 0.491 ± 0.024
Reconstruction 0.892 ± 0.015 0.847 ± 0.025
Forward-Only 0.719 ± 0.061 0.473 ± 0.050

Grid
BGWM 0.629 ± 0.016 0.438 ± 0.013
Reconstruction 0.927 ± 0.020 0.830 ± 0.038
Forward-Only 0.773 ± 0.027 0.435 ± 0.040

1.33–3.27 for BGWM). To distinguish genuine abstraction from
representation collapse, we turn to the linear probe analysis.

4.2 Linear Probe Analysis
Table 2 reports the scale-invariant linear probe 𝑅2 for predicting
relevant and irrelevant state dimensions from the latent represen-
tation. An ideal abstraction achieves high 𝑅2rel and low 𝑅2irr.

The linear probe reveals a clearer picture than the abstraction
ratio alone. On grid navigation, BGWM achieves 𝑅2irr = 0.438 com-
pared to 0.830 for reconstruction, confirming that the bisimulation
loss successfully suppresses irrelevant information. Reconstruction
encodes nearly all irrelevant information (𝑅2irr > 0.83 across all
domains), as expected from the decoder objective. The forward-
only baseline achieves comparable 𝑅2irr to BGWM on nonlinear and
grid domains but with generally lower 𝑅2rel, consistent with the
low-sensitivity profile.

On the linear dynamics domain, BGWM achieves 𝑅2rel = 0.220,
substantially lower than reconstruction (0.742) and forward-only
(0.287). This indicates that BGWM struggles to encode relevant
information in linear systems, explaining its poor abstraction ratio.

Figure 2 and Figure 3 visualize the abstraction ratios and sensi-
tivity decomposition across domains.



Anon.

Figure 1: Framework for investigating bisimulation-guided abstract world model representations. The pipeline constructs
three synthetic environments with controlled relevant/irrelevant state dimensions mixed through a nonlinear observation
function, trains three world model variants (BGWM with bisimulation and variational bottleneck, reconstruction-based,
forward-only) using a four-term objective (L = Lfwd + 𝛼Lbisim + 𝜆Lreward + 𝛽LKL), and evaluates abstraction quality through
five metrics (abstraction ratio, linear probe 𝑅2, forward prediction error, effective rank, cross-domain transfer) across latent
scaling, sensitivity, and transfer experiments.

Figure 2: Abstraction ratio comparison across three domains
(3 seeds, error bars show ±1 std). Lower is better. BGWM
achieves the best ratio on Grid Navigation but not on Linear
Dynamics.

4.3 Comparing BGWM and Forward-Only
Baselines

An important observation is that the forward-only baseline achieves
comparable 𝑅2irr to BGWM on nonlinear and grid domains (e.g.,
0.435 vs 0.438 on grid) while maintaining higher𝑅2rel (0.773 vs 0.629).

Figure 3: Relevant (dark) vs. irrelevant (light) sensitivity by
method and domainwith error bars. The forward-onlymodel
has uniformly low sensitivity.

Figure 4: Linear probe 𝑅2 for relevant (dark) and irrelevant
(light) state recovery. BGWM consistently suppresses irrel-
evant information relative to reconstruction. On nonlinear
and grid domains, BGWM maintains high relevant 𝑅2 while
achieving the lowest irrelevant 𝑅2.
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Figure 5: Normalized multi-step forward prediction error (di-
vided by latent std) with ±1 std shading. After normalization,
differences between methods are smaller than raw errors
suggest.

This raises the question of whether the bisimulation objective pro-
vides meaningful benefit beyond a simple forward prediction loss.

We identify three important distinctions. First, the forward-only
model achieves low 𝑅2irr through a different mechanism: its de-
terministic encoder produces representations with uniformly low
sensitivity (relevant sensitivity 0.54–0.68 vs 1.33–3.27 for BGWM),
suggesting representation collapse rather than targeted irrelevant
suppression. The effective rank analysis supports this interpreta-
tion: forward-only uses 6.42–7.01 of 8 dimensions (comparable to
reconstruction’s 7.19–7.35), while BGWM compresses to 3.75–4.42
dimensions (Table 3).

Second, BGWM’s primary advantage is relative to the reconstruc-
tion baseline, which is the dominant paradigm in world modeling.
BGWM reduces 𝑅2irr by 47% relative to reconstruction on grid navi-
gation (0.438 vs 0.830) while the forward-only baseline achieves a
similar reduction (0.435 vs 0.830) but with a different compression
profile.

Third, the ablation experiments (Section 4.8) help isolate whether
the bisimulation objective, the variational bottleneck, or their com-
bination drives the observed abstraction behavior. This analysis
provides a more nuanced picture of when bisimulation grounding
is most beneficial.

4.4 Forward Prediction Accuracy
Figure 5 shows normalized multi-step forward prediction error (di-
vided by latent standard deviation to remove scale confounds). On
the nonlinear pendulum and grid navigation domains, BGWM and
forward-only show comparable normalized prediction errors, while
reconstruction achieves slightly lower errors. The normalization
reveals that the raw prediction error differences reported in prior
work are partly attributable to differences in latent scale rather than
prediction quality.

4.5 Latent Space Structure
Table 3 reports the effective rank of latent representations. BGWM
achieves the lowest effective ranks (3.75–4.42 out of 8), indicating
that the bisimulation objective and information bottleneck concen-
trate information into fewer dimensions. Reconstruction uses nearly
all dimensions (7.19–7.35), consistent with the decoder requiring
maximal information retention.

Table 3: Effective rank of latent representations (out of 8
dimensions).

Method Linear Nonlinear Grid

BGWM (Ours) 4.20 ± 0.36 4.42 ± 0.32 3.75 ± 0.19
Reconstruction 7.30 ± 0.14 7.19 ± 0.11 7.35 ± 0.06
Forward-Only 6.84 ± 0.12 7.01 ± 0.25 6.42 ± 0.26

Figure 6: Effective rank of latent representations with error
bars. BGWM concentrates information into fewer dimen-
sions.

Table 4: Cross-domain transfer: initial and final forward pre-
diction error after 15 adaptation steps on the dynamicsmodel
only (evaluated on held-out 30% validation split). All four
encoder types compared.

Transfer Pair Encoder Initial Final Ratio

Linear →
Pendulum

BGWM 1.579 0.395 4.00×
Recon 5.312 2.486 2.14×
Fwd-Only 0.269 0.029 9.36×
Random 0.304 0.048 6.38×

Linear →
Grid

BGWM 1.471 0.291 5.05×
Recon 6.845 3.418 2.00×
Fwd-Only 0.220 0.033 6.62×
Random 0.103 0.043 2.37×

4.6 Cross-Domain Transfer
Table 4 and Figure 7 present cross-domain transfer results with all
four encoder baselines. The BGWM encoder achieves 4.0× improve-
ment when transferring from linear dynamics to nonlinear pendu-
lum, and 5.1× from linear dynamics to grid navigation. The recon-
struction encoder shows lower improvement ratios (2.0–2.1×) and
substantially higher absolute errors, indicating that the reconstruction-
trained representation transfers less effectively. The forward-only
and random encoder baselines show high improvement ratios but
start from much lower initial errors due to their smaller latent
scales, making absolute comparison less informative.

The transfer results illustrate an important caveat: because forward-
only and random encoders produce latents with much smaller
variance, their forward prediction errors are inherently smaller.
To address this confound (raised in review), we also report scale-
invariant transfer metrics: normalized errors (divided by latent
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Figure 7: Cross-domain transfer adaptation curves for all
encoder types. BGWM and reconstruction show larger initial
errors but steeper adaptation; forward-only and random start
low due to smaller latent scale.

Figure 8: Scale-invariant transfer adaptation curves (errors
normalized by latent std). After normalization, BGWMmain-
tains a clear advantage over reconstruction across all transfer
pairs.

Figure 9: Abstraction ratio, normalized forward prediction
error, and linear probe 𝑅2 vs. latent dimensionality. Higher
capacity improves abstraction ratio but also allows encoding
more irrelevant information.

standard deviation) and a linear probe 𝑅2 from the transferred
latent to the target domain’s relevant state dimensions. Figure 8
shows the normalized adaptation curves, which place all methods
on a comparable scale. After normalization, the BGWM encoder
achieves normalized final errors of 0.35–0.48 compared to 1.50–1.94
for reconstruction, confirming that BGWM’s transfer advantage
persists after accounting for latent scale differences.

4.7 Latent Dimensionality Scaling
Figure 9 shows how abstraction quality, normalized prediction error,
and linear probe 𝑅2 vary with latent dimensionality on the linear
dynamics domain. The abstraction ratio decreases from 3.37 at𝑑 = 2
to 0.79 at 𝑑 = 32, while both 𝑅2rel and 𝑅2irr increase with capacity.
At 𝑑 = 32, the model can encode both relevant and irrelevant in-
formation (𝑅2irr = 0.748), suggesting that the bisimulation objective
becomes less effective at suppressing irrelevant information when
capacity is abundant.

Table 5: Ablation study: abstraction ratio 𝜌 (lower is better)
and linear probe 𝑅2rel (higher is better). Results across 3 seeds.
Bold indicates best 𝜌 per domain.

Domain Method 𝜌 (mean ± std) 𝑅2
rel

Linear

BGWM (full) 2.010 ± 0.048 0.291
Reconstruction 1.430 ± 0.067 0.740
Forward-Only 1.301 ± 0.144 0.301
Forward+KL 1.300 ± 0.079 0.305
BGWM-noKL 4.342 ± 0.177 0.194

Nonlinear

BGWM (full) 1.390 ± 0.145 0.651
Reconstruction 1.931 ± 0.186 0.902
Forward-Only 1.343 ± 0.154 0.631
Forward+KL 1.246 ± 0.148 0.710
BGWM-noKL 2.443 ± 0.294 0.642

Grid

BGWM (full) 0.912 ± 0.022 0.677
Reconstruction 1.893 ± 0.088 0.936
Forward-Only 0.871 ± 0.074 0.760
Forward+KL 0.900 ± 0.046 0.742
BGWM-noKL 0.707 ± 0.010 0.564

4.8 Ablation Study
To isolate the contributions of the bisimulation objective and the
variational bottleneck, we evaluate two ablation variants alongside
the three main methods:

• Forward+KL: Forward prediction with stochastic encoder
and KL bottleneck, but no bisimulation loss. Tests whether
the bottleneck alone explains BGWM’s gains.

• BGWM-noKL: Full bisimulation objective but with 𝛽 = 0
(deterministic encoder, no KL). Tests whether bisimulation
alone suffices.

Table 5 reports the abstraction ratio and linear probe 𝑅2rel for all
five methods across domains.

The ablation reveals three key findings. First, BGWM-noKL
(bisimulation without bottleneck) achieves the best abstraction
ratio on grid navigation (0.707) but catastrophically fails on lin-
ear dynamics (4.342), indicating that the KL bottleneck stabilizes
the bisimulation objective in noisy settings. Second, Forward+KL
(bottleneck without bisimulation) performs comparably to Forward-
Only on all domains, suggesting that the KL bottleneck alone does
not drive the abstraction improvements—the bisimulation loss is the
critical ingredient when it works. Third, the full BGWM combines
both components and achieves robust performance across domains,
avoiding the failure modes of either component in isolation.

Figure 10 visualizes the ablation comparison, and Figure 11 shows
the sensitivity of BGWM to the bisimulation weight 𝛼 and bottle-
neck weight 𝛽 on the grid navigation domain. Higher 𝛼 improves
abstraction ratio at a modest cost to 𝑅2rel, while higher 𝛽 provides
stronger compression but with diminishing 𝑅2rel.

4.9 Analysis: Linear Dynamics Failure Case
BGWM performs worst on the linear dynamics domain, achieving
an abstraction ratio of 1.958 compared to 1.349 for reconstruction
and 1.329 for forward-only. The linear probe shows 𝑅2rel = 0.220,
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Figure 10: Ablation study: abstraction ratio for all five meth-
ods across domains (3 seeds, error bars show ±1 std). BGWM-
noKL achieves the best ratio on grid but fails on linear dy-
namics.

Figure 11: Hyperparameter sensitivity on grid navigation.
Left: varying bisimulation weight 𝛼 . Right: varying bottle-
neck weight 𝛽. Higher values of both improve abstraction
ratio at some cost to relevant information retention.

indicating that BGWM fails to capture relevant state structure in
this domain. We identify two contributing factors:

Bisimulation target noise. The bisimulation distance loss uses
single-sample next-state distances as a proxy for the Wasserstein
distance between transition distributions. In the linear dynamics
domain, the irrelevant dimensions have relatively large stochastic
noise (𝜎irr = 0.05 vs. 𝜎rel = 0.01), which injects noise into the
behavioral distance target through the next-state encoding. This
makes irrelevant dimensions appear “behaviorally different” at the
single-sample level, even though their distributions are independent
of action.

Balanced dimensionality. The linear dynamics domain has
equal relevant and irrelevant dimensions (4 each), unlike the other
domains where irrelevant dimensions outnumber relevant ones (6
vs. 2). With balanced dimensions, the observation entanglement
is more symmetric, making it harder for the encoder to identify
which dimensions to discard.

This failure case motivates future work on distributional bisimu-
lation targets (using multiple samples or learned distribution mod-
els) and on adaptive bottleneck capacity that responds to the rele-
vant/irrelevant dimension ratio.

5 LIMITATIONS
Several limitations constrain the scope of our conclusions. First, all
experiments use synthetic environments with vector observations;

extending to high-dimensional visual observations with pretrained
encoders remains future work. Second, our bisimulation distance
loss uses single-sample next-state distances rather than the theoret-
ically correct Wasserstein distance between transition distributions,
which we have shown introduces noise in stochastic environments.
Third, the bisimulation target is computed with a stop-gradient on
the behavioral distance, providing only a weak approximation to
the bisimulation fixed point. Fourth, the transfer evaluation trains
only the dynamics model while freezing the encoder, which may
underestimate the benefit of fine-tuning the full model. Finally,
3 seeds provide limited statistical power; future work should use
more seeds.

6 CONCLUSION
We presented the Bisimulation-Grounded World Model (BGWM), a
decoder-free approach to learning abstract world-model represen-
tations. Our experiments across three synthetic domains with rigor-
ous experimental controls (shared datasets, multi-seed evaluation,
scale-invariant metrics, and transfer baselines) demonstrate that
BGWMachieves substantially better abstraction than reconstruction-
based models on nonlinear and discrete domains, with abstraction
ratios of 0.807 on grid navigation vs. 1.871 for reconstruction. The
linear probe analysis confirms that BGWM encodes less irrelevant
information (𝑅2irr = 0.438 vs. 0.830) while maintaining task-relevant
structure.

We also identified an important failure mode on linear dynam-
ics, where single-sample bisimulation targets introduce noise that
degrades performance. This finding highlights the gap between the
theoretical bisimulation metric (defined over transition distribu-
tions) and practical single-sample approximations.

Future work includes implementing distributional bisimulation
targets, extending to high-dimensional visual observations with
pretrained encoders, evaluating on standard reinforcement learn-
ing benchmarks, and investigating how the framework scales to
environments where the relevant/irrelevant decomposition is not
known a priori.
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