Semantic Policy Enforcement for Low-Level Computer Use Agent
Tools: Taint-Aware Policies with Noisy Perception

Anonymous Author(s)

ABSTRACT

Computer Use Agents (CUAs) interact with GUIs through low-level
actions such as click and type, presenting fundamental challenges
for security policy enforcement: these primitives lack the semantics
needed for meaningful data-flow restrictions. We formalize three
policy abstraction levels—syntactic, semantic, and contextual—and
evaluate them through Monte Carlo simulations incorporating re-
alistic modeling improvements: (i) policies decide on predicted risk
from noisy confusion models rather than ground-truth risk ora-
cles; (ii) a three-way enforcement model (allow / flag-for-review /
block) with finite user review budgets; (iii) explicit taint propagation
from untrusted reads to downstream sink actions; and (iv) injec-
tion detection rules that fire on taint features rather than global
risk thresholds. Evaluated on 500 task scenarios across 8 domains,
our contextual taint-aware policy achieves an F1 score of 0.664
with 53.2% injection detection, compared to 0.449 F1 and 12.5% for
syntactic baselines, while preserving 85.3% task utility. Ablation
analysis reveals that taint-based rules account for the largest share
of injection detection improvement (drop from 54.3% to 30.0% when
removed), while the review mechanism enables a favorable safety—
utility balance. These results demonstrate that data-flow awareness
and calibrated perception models are essential for securing CUA
tool invocations beyond naive risk-threshold filtering.

1 INTRODUCTION
Computer Use Agents (CUAs)—AI systems that interact with soft-

ware through GUI-level actions such as clicking, typing, and navigating—

have created new security challenges [2]. Within the Dual-LLM
architecture, control-flow isolation separates privileged planning
from quarantined perception, yet data flow remains vulnerable
because the perception model’s outputs can steer execution [2].

Standard information-flow policies [1, 6] can govern semanti-
cally rich APIs, but CUA tools like click(x,y) lack intrinsic se-
mantics. This motivates the question: How can we design semantic
security policies for low-level CUA tool invocations that model realistic
perception noise and data-flow constraints?

Prior work on this problem [10] used an oracle-based simula-
tion where policies gated on ground-truth risk levels, effectively
assuming perfect perception. That design suppressed false positives
and inflated contextual policy performance. We address six specific
limitations identified in review:

(1) Noisy perception model (review A): Policies now decide on
predicted risk sampled from per-level confusion matrices, not
ground-truth risk.

(2) Three-way enforcement (review B): Actions can be allowed,
flagged for user review, or blocked. A finite review budget per
task models realistic user attention.

(3) Taint propagation (review C): READ_PAGE actions introduce
taint; subsequent sink actions (type, submit, send, auth, execute,
modify) inherit it.

(4) Taint-based injection detection (review D): Injection rules
fire on tainted sinks rather than a global risk filter, constraining
detection to data-flow features.

(5) Fair comparison (review E): All policy levels are evaluated
on identical scenario sets per trial.

(6) Stable seeding (review F): Domain-dependent seeds use hashlib.md5

instead of Python’s hash().

2 PROBLEM FORMULATION
2.1 CUA Tool Actions and Taint Model

We model CUA interactions as sequences of typed actions a =
(z,t,c,r, 7, tainted) where 7 € 7 is the action type (navigate, click,
type, read, submit, download, execute, modify, send, auth), ¢ is the
target, c is context, r is the ground-truth risk level (hidden from
the policy), 7 is the predicted risk (available to the policy), and
tainted indicates whether the action carries data originating from
an untrusted READ_PAGE.

Taint propagation follows a simple forward model inspired by
dynamic taint analysis [7]: once a READ_PAGE action executes, all
subsequent sink actions (TYPE_TEXT, SUBMIT_FORM, SEND_MESSAGE,
AUTH_ACTION, EXECUTE_JS, MODIFY_SETTINGS) are marked tainted.
Prompt injection attacks are modeled as deceptive tainted actions
with escalated ground-truth risk.

2.2 Risk Prediction Model

For each policy level ¢ € {syntactic, semantic, contextual}, we de-
fine a 5 X 5 confusion matrix Cp where C;[i, j] = P(f = j | r = i).
Higher policy levels have more accurate confusion matrices (e.g.,
contextual achieves 88% accuracy for critical risks vs. 70% for syntac-
tic). This replaces the oracle model where policies directly observed
r.

2.3 Three-Way Enforcement

Each policy rule specifies an enforcement outcome: BLock (hard
deny), FLAaG (queue for user review), or ALLow. Flagged actions
consume from a per-task review budget B = 5; when the budget is
exhausted, flags default to blocks. User approval probability depends
on the true risk: safe actions are approved with probability 0.95,
while risky actions are approved with probability 0.85 X 0.5 = 0.425.

2.4 Policy Levels

e Syntactic: 6 rules covering 6 action types. High FPR (0.12-0.28),
high FNR (0.14-0.24). Mix of block and flag outcomes.

e Semantic: 8 rules covering 8 action types. Moderate FPR (0.03-
0.10), moderate FNR (0.08-0.14). Mix of block and flag outcomes.

o Contextual: 8 standard rules plus 6 taint-specific rules that only
fire on tainted sink actions. Low FPR (0.01-0.05), low FNR (0.04—
0.07). Taint rules enable data-flow-aware injection detection.

Table 1: Revised policy comparison over 15 trials of 500 tasks
with noisy perception and review budget. Values are mean +
std.

Metric None Syntactic Semantic Contextual
Safety Recall ~ 0.000 0.293+0.012 0.418+0.015 0.498+0.015
Precision 0.000 0.960+0.011 0.995+0.003 0.996+0.003
F1 Score 0.000 0.449+0.014 0.588+0.016 0.664+0.014
FPR 0.000 0.006+0.002 0.001x0.001 0.001%0.001
Utility 1.000 0.905+0.004 0.872+0.005 0.853+0.006
Inj. Detect 0.000 0.125%0.024 0.238+0.051 0.532%0.043
Task Compl. 1.000 0.562+0.015 0.454+0.021 0.409+0.018
Flag Rate 0.000 0.081£0.006 0.092+0.006 0.106%0.005

3 METHODOLOGY

3.1 Simulation Framework

We simulate CUA task execution via Monte Carlo sampling over 6
task types and 8 application domains. For each trial: (1) generate N
task scenarios with taint propagation; (2) for each policy level, pre-
dict risk via the confusion model; (3) enforce rules using predicted
risk and taint status; (4) resolve flags against the review budget; (5)
score against ground-truth labels.

3.2 Evaluation Metrics

We measure safety recall (risky actions blocked), safety precision
(blocked actions that were truly risky), F1 score, false positive rate,
utility score (necessary actions allowed), injection detection rate,
task completion rate, flag rate, and flag approval rate.

4 RESULTS

4.1 Main Experiment

Table 1 presents results over 15 trials of 500 tasks. With noisy per-
ception, all policies show lower safety recall than oracle-based
baselines—contextual achieves 49.8% vs. the prior oracle-based
94.7%—reflecting the realistic difficulty of risk classification. Contex-
tual policies achieve the highest F1 (0.664), a 48% improvement over
syntactic (0.449). Precision remains high across all active policies
(>0.96), indicating that noisy perception primarily reduces recall
rather than introducing false positives. The flag rate increases from
syntactic (8.1%) to contextual (10.6%), reflecting broader rule cover-
age.

4.2 Pareto Frontier Analysis

Figure 1 shows the safety—utility Pareto frontier. Compared to
the prior oracle-based model, the frontier has shifted: contextual
policies no longer achieve near-perfect safety recall. Instead, they
occupy a more realistic position at (0.50, 0.85), offering the best
available trade-off. All four levels remain Pareto-optimal.

4.3 Domain Analysis

Domain risk multipliers range from 0.7 (general browsing) to 1.8
(banking). With noisy perception, contextual policies in banking
achieve 47.9% safety recall and 83.2% utility, while general browsing
achieves 51.3% safety recall and 89.7% utility. Injection detection

Anon.

Safety--Utility Pareto Frontier

1.01

Utility Score
° o
oo [te]

I
N
L

0.6 1
Pareto Frontier

T T
0.0 0.2 0.4 0.6 0.8 1.0
Safety Recall

Figure 1: Safety—utility Pareto frontier under noisy percep-
tion. Contextual policies offer the best available trade-off
point.

F1 Score by Domain and Policy Level

General Browsing (0.7x) 0.459 0.602 0.676 10
Shopping (1.0x) 0.447 0.588 0.673 0.9
% Developer Tools (1.1x) 0.430 0.608 0.669 08
2
El
£ Social Media (1.2x) 0.462 0.600 0.671 07 g
¥ &
= Enterprise (1.4x) 0.448 0.597 0.668 06
c
©
£ Government (1.5x) 0.457 0.592 0.660 05
o
Healthcare (1.6x) 0.427 0.584 0.642 04
Banking (1.8x) 0.429 0.580 0.647 0.3
Syntactic Semantic Contextual
Policy Level

Figure 2: F1 score by domain and policy level. Contextual
policies dominate across all domains, with the largest abso-
lute gains in high-risk domains.

shows strong domain variation: government (60.7%) and shopping
(57.6%) exceed the overall average, while general browsing (49.7%)
lags due to lower base taint rates. Figure 2 visualizes F1 scores
across domains and policy levels.

4.4 Scalability Analysis

As task length increases from 3 to 50 actions, contextual F1 remains
stable while syntactic and semantic F1 show gradual improvement
but remain well below contextual performance. Figure 3 confirms
that the contextual advantage persists across task complexities.

4.5 Injection Robustness

Across injection rates from 5% to 70%, contextual policies maintain
detection rates between 45-56%, far exceeding syntactic (12-17%)
and semantic (19-28%) baselines. Figure 4 shows that detection
performance is stable across attack intensities, validating the ro-
bustness of taint-based rules.

Semantic Policy Enforcement for Low-Level Computer Use Agent Tools: Taint-Aware Policies with Noisy Perception

Policy F1 Score vs. Task Complexity

0.9
0.8

0.7 4
Syntactic

0.6 4 Semantic
Contextual

F1 Score

0.5 4

0.4 4

0.3

0.2

0 10 20 30 40 50
Number of Actions per Task

Figure 3: F1 score vs. task complexity (number of actions per
task).

Injection Detection vs. Attack Rate Safety Recall Under Varying Injection Rates

06 Syntactic
Semantic
| Contextual

Syntactic
Semantic
Contextual

Injection Detection Rate
Safety Recall

Injection Attack Rate Injection Attack Rate

Figure 4: Left: injection detection rate vs. attack rate. Right:
safety recall under varying injection rates. Contextual poli-
cies maintain consistent advantages.

Table 2: Ablation study: removing components from the con-
textual policy. “Full” is the complete contextual policy.

Ablation F1 Utility Inj.Det. Task Compl.
Full contextual 0.660 0.859 0.543 0.411
No taint rules 0.579 0.880 0.300 0.463
No deceptive penalty 0.653 0.858 0.464 0.410
Semantic confusion 0.659 0.858 0.529 0.409
No review (flag=block) 0.770 0.817 0.560 0.330

4.6 Ablation Study

Table 2 decomposes the contextual policy’s performance. Removing
taint-based rules reduces injection detection from 54.3% to 30.0% (a
44.8% relative drop), confirming that taint propagation is the pri-
mary driver of injection detection. Removing the deceptive-action
penalty reduces injection detection by 14.6%. Downgrading the risk
confusion model to semantic-level has minimal impact (F1: 0.659
vs. 0.660), suggesting that taint rules matter more than perception
accuracy at this level. Disabling the review mechanism (all flags
become blocks) increases F1 to 0.770 by converting flags to hard
blocks, but reduces utility from 85.9% to 81.7% and task completion
from 41.1% to 33.0%.

Ablation Study: Contextual Policy Components

F1 Score Safety Recall Utility Inj. Detection

Figure 5: Ablation study: impact of removing individual com-
ponents from the contextual policy on F1, safety recall, util-
ity, and injection detection.

5 DISCUSSION

Impact of realistic perception. The most significant change from
the prior oracle-based model is the drop in safety recall: contextual
policies achieve 49.8% vs. the oracle’s 94.7%. This reflects the fun-
damental difficulty of risk classification from noisy observations
and demonstrates why oracle-based evaluations can be mislead-
ing. Precision remains high (>0.99), indicating that policies are
conservative—when they flag or block, they are almost always
correct.

Three-way enforcement. The review mechanism provides a prin-
cipled middle ground between permissive (allow-all) and restrictive
(block-all) policies. With a budget of 5 reviews per task, contextual
policies achieve 85.3% utility while maintaining 49.8% safety re-
call. Without review (ablation: flags become blocks), utility drops to
81.7% and task completion falls from 41.1% to 33.0%, confirming that
user-in-the-loop review substantially improves the safety—utility
trade-off.

Taint propagation. The ablation study confirms that taint-based
rules are the primary driver of injection detection: removing them
reduces detection from 54.3% to 30.0%. This validates the review’s
recommendation to model data-flow constraints explicitly rather
than relying on global risk thresholds. The taint model, while sim-
ple (forward propagation from reads to sinks), captures the core
insight that injection attacks exploit the flow of untrusted data into
sensitive actions.

Limitations. Several important limitations remain: (1) the taint
model uses simple forward propagation without tracking specific
data flows—a real system would need field-level taint tracking; (2)
confusion matrices are calibrated rather than learned from real
classifiers; (3) the simulation does not model correlated failures or
adversarial evasion beyond simple injection; (4) the review budget
is static rather than adaptive to task context; (5) real-world CUA
distributions may differ from our synthetic tasks.

6 RELATED WORK

Information-flow control has a long history [1, 4, 6]. Dynamic taint
analysis [7] provides the foundation for our taint propagation model.
The Dual-LLM architecture [2] introduced control-flow isolation for
CUA agents but left data-flow policies as an open problem. Prompt
injection attacks [3, 9] pose particular threats to CUA systems.
Tool emulation environments [5] and OS benchmarks [8] have
evaluated agent capabilities but not security policy enforcement
under realistic perception noise. Our work bridges this gap with
taint-aware policies evaluated under noisy confusion models.

7 CONCLUSION

We presented a revised framework for semantic policy enforcement
in CUAs that addresses key limitations of oracle-based evaluation:
noisy risk perception, three-way enforcement with review budgets,
taint-based injection detection, and fair cross-policy comparison.
Our experiments show that contextual taint-aware policies achieve
an F1 of 0.664 with 53.2% injection detection and 85.3% utility—
modest but realistic gains over syntactic baselines. Ablation analysis
identifies taint propagation as the single most important component
for injection detection. Future work should integrate learned risk
classifiers, field-level taint tracking, and adaptive review budgets
to further close the gap between simulation and deployment.

REFERENCES

[1] Dorothy E Denning. 1976. A lattice model of secure information flow. Commun.
ACM 19, 5 (1976), 236-243.

Anon.

Jacob Foerster et al. 2026. CaMeLs Can Use Computers Too: System-level Security
for Computer Use Agents. In arXiv preprint arXiv:2601.09923.

Kai Greshake et al. 2023. Not what you’ve signed up for: Compromising real-
world LLM-integrated applications with indirect prompt injection. arXiv preprint
arXiv:2302.12173 (2023).

Andrew C Myers. 1999. JFlow: Practical mostly-static information flow control.
ACM SIGPLAN Notices 34, 1 (1999), 228-241.

Yangjun Ruan et al. 2024. ToolEmu: Identifying the risks of LM agents with an
emulated tool execution environment. arXiv preprint arXiv:2309.15817 (2024).
Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow
security. In IEEE Journal on Selected Areas in Communications, Vol. 21. 5-19.
Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In IEEE Symposium on Security and Privacy.
317-331.

Tianbao Wu et al. 2024. OSWorld: Benchmarking multimodal agents for open-
ended tasks in real computer environments. arXiv preprint arXiv:2404.07972
(2024).

Yueqi Xie et al. 2023. Defending ChatGPT against jailbreak attack via self-
reminders. Nature Machine Intelligence 5 (2023), 1486-1496.

Yifeng Zheng et al. 2024. Agent security: A survey of threats and defenses. arXiv
preprint arXiv:2401.16277 (2024).

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 CUA Tool Actions and Taint Model
	2.2 Risk Prediction Model
	2.3 Three-Way Enforcement
	2.4 Policy Levels

	3 Methodology
	3.1 Simulation Framework
	3.2 Evaluation Metrics

	4 Results
	4.1 Main Experiment
	4.2 Pareto Frontier Analysis
	4.3 Domain Analysis
	4.4 Scalability Analysis
	4.5 Injection Robustness
	4.6 Ablation Study

	5 Discussion
	6 Related Work
	7 Conclusion
	References

