
Semantic Policy Enforcement for Low-Level Computer Use Agent
Tools: Taint-Aware Policies with Noisy Perception

Anonymous Author(s)

ABSTRACT
Computer Use Agents (CUAs) interact with GUIs through low-level

actions such as click and type, presenting fundamental challenges

for security policy enforcement: these primitives lack the semantics

needed for meaningful data-flow restrictions. We formalize three

policy abstraction levels—syntactic, semantic, and contextual—and

evaluate them through Monte Carlo simulations incorporating re-

alistic modeling improvements: (i) policies decide on predicted risk

from noisy confusion models rather than ground-truth risk ora-

cles; (ii) a three-way enforcement model (allow / flag-for-review /

block) with finite user review budgets; (iii) explicit taint propagation

from untrusted reads to downstream sink actions; and (iv) injec-

tion detection rules that fire on taint features rather than global

risk thresholds. Evaluated on 500 task scenarios across 8 domains,

our contextual taint-aware policy achieves an F1 score of 0.664

with 53.2% injection detection, compared to 0.449 F1 and 12.5% for

syntactic baselines, while preserving 85.3% task utility. Ablation

analysis reveals that taint-based rules account for the largest share

of injection detection improvement (drop from 54.3% to 30.0% when

removed), while the review mechanism enables a favorable safety–

utility balance. These results demonstrate that data-flow awareness

and calibrated perception models are essential for securing CUA

tool invocations beyond naive risk-threshold filtering.

1 INTRODUCTION
Computer Use Agents (CUAs)—AI systems that interact with soft-

ware throughGUI-level actions such as clicking, typing, and navigating—

have created new security challenges [2]. Within the Dual-LLM

architecture, control-flow isolation separates privileged planning

from quarantined perception, yet data flow remains vulnerable

because the perception model’s outputs can steer execution [2].

Standard information-flow policies [1, 6] can govern semanti-

cally rich APIs, but CUA tools like click(x,y) lack intrinsic se-

mantics. This motivates the question: How can we design semantic
security policies for low-level CUA tool invocations that model realistic
perception noise and data-flow constraints?

Prior work on this problem [10] used an oracle-based simula-

tion where policies gated on ground-truth risk levels, effectively

assuming perfect perception. That design suppressed false positives

and inflated contextual policy performance. We address six specific

limitations identified in review:

(1) Noisy perception model (review A): Policies now decide on

predicted risk sampled from per-level confusion matrices, not

ground-truth risk.

(2) Three-way enforcement (review B): Actions can be allowed,

flagged for user review, or blocked. A finite review budget per

task models realistic user attention.

(3) Taint propagation (review C): READ_PAGE actions introduce

taint; subsequent sink actions (type, submit, send, auth, execute,

modify) inherit it.

(4) Taint-based injection detection (review D): Injection rules

fire on tainted sinks rather than a global risk filter, constraining

detection to data-flow features.

(5) Fair comparison (review E): All policy levels are evaluated

on identical scenario sets per trial.

(6) Stable seeding (reviewF):Domain-dependent seeds use hashlib.md5
instead of Python’s hash().

2 PROBLEM FORMULATION
2.1 CUA Tool Actions and Taint Model
We model CUA interactions as sequences of typed actions 𝑎 =

(𝜏, 𝑡, 𝑐, 𝑟, 𝑟, tainted) where 𝜏 ∈ T is the action type (navigate, click,

type, read, submit, download, execute, modify, send, auth), 𝑡 is the

target, 𝑐 is context, 𝑟 is the ground-truth risk level (hidden from

the policy), 𝑟 is the predicted risk (available to the policy), and

tainted indicates whether the action carries data originating from

an untrusted READ_PAGE.
Taint propagation follows a simple forward model inspired by

dynamic taint analysis [7]: once a READ_PAGE action executes, all

subsequent sink actions (TYPE_TEXT, SUBMIT_FORM, SEND_MESSAGE,
AUTH_ACTION, EXECUTE_JS, MODIFY_SETTINGS) are marked tainted.

Prompt injection attacks are modeled as deceptive tainted actions

with escalated ground-truth risk.

2.2 Risk Prediction Model
For each policy level ℓ ∈ {syntactic, semantic, contextual}, we de-
fine a 5 × 5 confusion matrix 𝐶ℓ where 𝐶ℓ [𝑖, 𝑗] = 𝑃 (𝑟 = 𝑗 | 𝑟 = 𝑖).
Higher policy levels have more accurate confusion matrices (e.g.,

contextual achieves 88% accuracy for critical risks vs. 70% for syntac-

tic). This replaces the oracle model where policies directly observed

𝑟 .

2.3 Three-Way Enforcement
Each policy rule specifies an enforcement outcome: Block (hard

deny), Flag (queue for user review), or Allow. Flagged actions

consume from a per-task review budget 𝐵 = 5; when the budget is

exhausted, flags default to blocks. User approval probability depends

on the true risk: safe actions are approved with probability 0.95,

while risky actions are approved with probability 0.85× 0.5 = 0.425.

2.4 Policy Levels
• Syntactic: 6 rules covering 6 action types. High FPR (0.12–0.28),

high FNR (0.14–0.24). Mix of block and flag outcomes.

• Semantic: 8 rules covering 8 action types. Moderate FPR (0.03–

0.10), moderate FNR (0.08–0.14). Mix of block and flag outcomes.

• Contextual: 8 standard rules plus 6 taint-specific rules that only
fire on tainted sink actions. Low FPR (0.01–0.05), low FNR (0.04–

0.07). Taint rules enable data-flow-aware injection detection.



Anon.

Table 1: Revised policy comparison over 15 trials of 500 tasks
with noisy perception and review budget. Values are mean ±
std.

Metric None Syntactic Semantic Contextual

Safety Recall 0.000 0.293±0.012 0.418±0.015 0.498±0.015
Precision 0.000 0.960±0.011 0.995±0.003 0.996±0.003
F1 Score 0.000 0.449±0.014 0.588±0.016 0.664±0.014
FPR 0.000 0.006±0.002 0.001±0.001 0.001±0.001
Utility 1.000 0.905±0.004 0.872±0.005 0.853±0.006
Inj. Detect 0.000 0.125±0.024 0.238±0.051 0.532±0.043
Task Compl. 1.000 0.562±0.015 0.454±0.021 0.409±0.018
Flag Rate 0.000 0.081±0.006 0.092±0.006 0.106±0.005

3 METHODOLOGY
3.1 Simulation Framework
We simulate CUA task execution via Monte Carlo sampling over 6

task types and 8 application domains. For each trial: (1) generate 𝑁

task scenarios with taint propagation; (2) for each policy level, pre-

dict risk via the confusion model; (3) enforce rules using predicted

risk and taint status; (4) resolve flags against the review budget; (5)

score against ground-truth labels.

3.2 Evaluation Metrics
We measure safety recall (risky actions blocked), safety precision

(blocked actions that were truly risky), F1 score, false positive rate,

utility score (necessary actions allowed), injection detection rate,

task completion rate, flag rate, and flag approval rate.

4 RESULTS
4.1 Main Experiment
Table 1 presents results over 15 trials of 500 tasks. With noisy per-

ception, all policies show lower safety recall than oracle-based

baselines—contextual achieves 49.8% vs. the prior oracle-based

94.7%—reflecting the realistic difficulty of risk classification. Contex-

tual policies achieve the highest F1 (0.664), a 48% improvement over

syntactic (0.449). Precision remains high across all active policies

(>0.96), indicating that noisy perception primarily reduces recall

rather than introducing false positives. The flag rate increases from

syntactic (8.1%) to contextual (10.6%), reflecting broader rule cover-

age.

4.2 Pareto Frontier Analysis
Figure 1 shows the safety–utility Pareto frontier. Compared to

the prior oracle-based model, the frontier has shifted: contextual

policies no longer achieve near-perfect safety recall. Instead, they

occupy a more realistic position at (0.50, 0.85), offering the best

available trade-off. All four levels remain Pareto-optimal.

4.3 Domain Analysis
Domain risk multipliers range from 0.7 (general browsing) to 1.8

(banking). With noisy perception, contextual policies in banking

achieve 47.9% safety recall and 83.2% utility, while general browsing

achieves 51.3% safety recall and 89.7% utility. Injection detection

Figure 1: Safety–utility Pareto frontier under noisy percep-
tion. Contextual policies offer the best available trade-off
point.

Figure 2: F1 score by domain and policy level. Contextual
policies dominate across all domains, with the largest abso-
lute gains in high-risk domains.

shows strong domain variation: government (60.7%) and shopping

(57.6%) exceed the overall average, while general browsing (49.7%)

lags due to lower base taint rates. Figure 2 visualizes F1 scores

across domains and policy levels.

4.4 Scalability Analysis
As task length increases from 3 to 50 actions, contextual F1 remains

stable while syntactic and semantic F1 show gradual improvement

but remain well below contextual performance. Figure 3 confirms

that the contextual advantage persists across task complexities.

4.5 Injection Robustness
Across injection rates from 5% to 70%, contextual policies maintain

detection rates between 45–56%, far exceeding syntactic (12–17%)

and semantic (19–28%) baselines. Figure 4 shows that detection

performance is stable across attack intensities, validating the ro-

bustness of taint-based rules.



Semantic Policy Enforcement for Low-Level Computer Use Agent Tools: Taint-Aware Policies with Noisy Perception

Figure 3: F1 score vs. task complexity (number of actions per
task).

Figure 4: Left: injection detection rate vs. attack rate. Right:
safety recall under varying injection rates. Contextual poli-
cies maintain consistent advantages.

Table 2: Ablation study: removing components from the con-
textual policy. “Full” is the complete contextual policy.

Ablation F1 Utility Inj. Det. Task Compl.

Full contextual 0.660 0.859 0.543 0.411

No taint rules 0.579 0.880 0.300 0.463

No deceptive penalty 0.653 0.858 0.464 0.410

Semantic confusion 0.659 0.858 0.529 0.409

No review (flag=block) 0.770 0.817 0.560 0.330

4.6 Ablation Study
Table 2 decomposes the contextual policy’s performance. Removing

taint-based rules reduces injection detection from 54.3% to 30.0% (a

44.8% relative drop), confirming that taint propagation is the pri-

mary driver of injection detection. Removing the deceptive-action

penalty reduces injection detection by 14.6%. Downgrading the risk

confusion model to semantic-level has minimal impact (F1: 0.659

vs. 0.660), suggesting that taint rules matter more than perception

accuracy at this level. Disabling the review mechanism (all flags

become blocks) increases F1 to 0.770 by converting flags to hard

blocks, but reduces utility from 85.9% to 81.7% and task completion

from 41.1% to 33.0%.

Figure 5: Ablation study: impact of removing individual com-
ponents from the contextual policy on F1, safety recall, util-
ity, and injection detection.

5 DISCUSSION
Impact of realistic perception. The most significant change from

the prior oracle-based model is the drop in safety recall: contextual

policies achieve 49.8% vs. the oracle’s 94.7%. This reflects the fun-

damental difficulty of risk classification from noisy observations

and demonstrates why oracle-based evaluations can be mislead-

ing. Precision remains high (>0.99), indicating that policies are

conservative—when they flag or block, they are almost always

correct.

Three-way enforcement. The review mechanism provides a prin-

cipled middle ground between permissive (allow-all) and restrictive

(block-all) policies. With a budget of 5 reviews per task, contextual

policies achieve 85.3% utility while maintaining 49.8% safety re-

call. Without review (ablation: flags become blocks), utility drops to

81.7% and task completion falls from 41.1% to 33.0%, confirming that

user-in-the-loop review substantially improves the safety–utility

trade-off.

Taint propagation. The ablation study confirms that taint-based

rules are the primary driver of injection detection: removing them

reduces detection from 54.3% to 30.0%. This validates the review’s

recommendation to model data-flow constraints explicitly rather

than relying on global risk thresholds. The taint model, while sim-

ple (forward propagation from reads to sinks), captures the core

insight that injection attacks exploit the flow of untrusted data into

sensitive actions.

Limitations. Several important limitations remain: (1) the taint

model uses simple forward propagation without tracking specific

data flows—a real system would need field-level taint tracking; (2)

confusion matrices are calibrated rather than learned from real

classifiers; (3) the simulation does not model correlated failures or

adversarial evasion beyond simple injection; (4) the review budget

is static rather than adaptive to task context; (5) real-world CUA

distributions may differ from our synthetic tasks.

6 RELATEDWORK
Information-flow control has a long history [1, 4, 6]. Dynamic taint

analysis [7] provides the foundation for our taint propagationmodel.

The Dual-LLM architecture [2] introduced control-flow isolation for

CUA agents but left data-flow policies as an open problem. Prompt

injection attacks [3, 9] pose particular threats to CUA systems.

Tool emulation environments [5] and OS benchmarks [8] have

evaluated agent capabilities but not security policy enforcement

under realistic perception noise. Our work bridges this gap with

taint-aware policies evaluated under noisy confusion models.



Anon.

7 CONCLUSION
We presented a revised framework for semantic policy enforcement

in CUAs that addresses key limitations of oracle-based evaluation:

noisy risk perception, three-way enforcement with review budgets,

taint-based injection detection, and fair cross-policy comparison.

Our experiments show that contextual taint-aware policies achieve

an F1 of 0.664 with 53.2% injection detection and 85.3% utility—

modest but realistic gains over syntactic baselines. Ablation analysis

identifies taint propagation as the single most important component

for injection detection. Future work should integrate learned risk

classifiers, field-level taint tracking, and adaptive review budgets

to further close the gap between simulation and deployment.

REFERENCES
[1] Dorothy E Denning. 1976. A lattice model of secure information flow. Commun.

ACM 19, 5 (1976), 236–243.

[2] Jacob Foerster et al. 2026. CaMeLs Can Use Computers Too: System-level Security

for Computer Use Agents. In arXiv preprint arXiv:2601.09923.
[3] Kai Greshake et al. 2023. Not what you’ve signed up for: Compromising real-

world LLM-integrated applications with indirect prompt injection. arXiv preprint
arXiv:2302.12173 (2023).

[4] Andrew C Myers. 1999. JFlow: Practical mostly-static information flow control.

ACM SIGPLAN Notices 34, 1 (1999), 228–241.
[5] Yangjun Ruan et al. 2024. ToolEmu: Identifying the risks of LM agents with an

emulated tool execution environment. arXiv preprint arXiv:2309.15817 (2024).

[6] Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow

security. In IEEE Journal on Selected Areas in Communications, Vol. 21. 5–19.
[7] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All you ever

wanted to know about dynamic taint analysis and forward symbolic execution

(but might have been afraid to ask). In IEEE Symposium on Security and Privacy.
317–331.

[8] Tianbao Wu et al. 2024. OSWorld: Benchmarking multimodal agents for open-

ended tasks in real computer environments. arXiv preprint arXiv:2404.07972
(2024).

[9] Yueqi Xie et al. 2023. Defending ChatGPT against jailbreak attack via self-

reminders. Nature Machine Intelligence 5 (2023), 1486–1496.
[10] Yifeng Zheng et al. 2024. Agent security: A survey of threats and defenses. arXiv

preprint arXiv:2401.16277 (2024).


	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 CUA Tool Actions and Taint Model
	2.2 Risk Prediction Model
	2.3 Three-Way Enforcement
	2.4 Policy Levels

	3 Methodology
	3.1 Simulation Framework
	3.2 Evaluation Metrics

	4 Results
	4.1 Main Experiment
	4.2 Pareto Frontier Analysis
	4.3 Domain Analysis
	4.4 Scalability Analysis
	4.5 Injection Robustness
	4.6 Ablation Study

	5 Discussion
	6 Related Work
	7 Conclusion
	References

