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ABSTRACT
LLM-powered agents exhibit intergroup bias in controlled settings,
but the transferability of this bias to real-world deployments and
its domain-specific harms remain poorly understood. We present a
parametric simulation framework modeling agent decision-making
across five high-stakes domains—customer service, healthcare triage,
content moderation, education, and hiring—varying intergroup cue
strength, multi-step interaction horizon with compounding feed-
back, and belief poisoning rates. Using 10 independent replicate
runs per condition with 95% confidence intervals (t-distribution,
𝑑 𝑓 = 9) and Cohen’s 𝑑 effect sizes, we find that hiring exhibits the
highest bias magnitude (0.206±0.004) and harm score (0.149±0.002),
and is the only domain with a disparate impact ratio (0.411) clearly
below the 0.8 legal threshold.We evaluate three complementary fair-
ness metrics—disparate impact, equal opportunity difference, and
predictive parity—using domain-specific thresholds, and find that
all three identify hiring as the most problematic domain while pro-
viding complementary views of bias across other domains. A null
model baseline with symmetric clipping confirms that observed ef-
fects arise from structural bias rather than simulation artifacts (null
model bias < 0.007 across all domains). Sensitivity analysis varying
all domain parameters ±50% demonstrates that key findings—the
ranking of healthcare and hiring as highest-risk domains—are ro-
bust to parameter perturbation, while harm scores are most sensi-
tive to stakes and harm weight. Lab-to-deployment transfer ratios
range from 0.81 to 0.83, indicating that lab measurements provide
conservative but domain-dependent overestimates. Belief poison-
ing at 30% rate amplifies bias by approximately 72%. These results
provide a risk analysis scaffold for prioritizing domain-specific bias
auditing and adversarial robustness testing in agent deployments.
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1 INTRODUCTION
Wang et al. [21] demonstrated that LLM-powered agents exhibit in-
tergroup bias in minimal-group allocation simulations, paralleling
decades of findings from social identity theory [20]. Critically, their
work showed that belief poisoning attacks can suppress human-
oriented safeguards and reactivate latent bias—an adversarial vul-
nerability with direct implications for deployed systems. However,
two key questions remain open: (1) does bias observed under con-
trolled lab conditions transfer to the more complex conditions of
real-world deployment, and (2) what domain-specific harms result
when agents make biased decisions in high-stakes contexts such as
healthcare, hiring, and education?

Answering these questions empirically requires deploying agents
in sensitive domains and measuring discriminatory outcomes—
a process that is both ethically fraught and logistically difficult.

Simulation-based risk analysis offers a complementary path: by
modeling plausible bias dynamics under varied conditions, we can
identify which domains and parameter regimes warrant the most
urgent empirical scrutiny. This approach functions as a risk analysis
scaffold that guides future experimental and auditing work, even
without access to real agent deployments.

We present a parametric simulation framework that models
agent decision-making across five deployment domains, system-
atically varying intergroup cue strength, multi-step interaction
horizon with compounding feedback, and adversarial belief poison-
ing rates. Our contributions are:

(1) A simulation framework quantifying bias magnitude and
domain-specific harm across five high-stakes domains with
uncertainty estimates and Cohen’s 𝑑 effect sizes.

(2) Analysis of how cue strength, multi-step interaction hori-
zon with feedback loops, and belief poisoning modulate
bias and harm.

(3) Measurement of lab-to-deployment transfer ratios with
confidence intervals across all five domains.

(4) Evaluation using three complementary fairness metrics—
disparate impact, equal opportunity difference, and pre-
dictive parity—with domain-specific thresholds, revealing
complementary views of bias across domains.

(5) A null model baseline with symmetric clipping confirming
that observed effects arise from structural bias, not simula-
tion artifacts.

(6) Sensitivity analysis demonstrating robustness of key find-
ings to parameter perturbation (±50%).

(7) Domain-specific risk profiles and actionable recommenda-
tions for agent deployment auditing.

2 RELATEDWORK
2.1 Intergroup Bias in Social Psychology
Social Identity Theory [20] established that mere categorization
into groups—even arbitrary ones—is sufficient to produce ingroup
favoritism and outgroup discrimination. Tajfel et al. [19] demon-
strated this through the minimal group paradigm, where partici-
pants allocated more resources to ingroup members despite having
no prior interaction or conflict of interest. Decades of subsequent
research have shown that the strength and nature of intergroup bias
varies substantially across domains: hiring discrimination persists
at stable rates over time [1, 16], while healthcare bias manifests
through differential pain assessment and treatment recommenda-
tions [12]. These domain-specific patterns motivate our choice to
model bias dynamics separately for each deployment context rather
than assuming a single universal bias model.

2.2 Bias in AI Systems
Bias in AI systems has been documented across modalities and
domains. Buolamwini and Gebru [2] demonstrated that commercial
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gender classification systems exhibited significantly higher error
rates for darker-skinned female faces, revealing intersectional dis-
parities in computer vision. In healthcare, Obermeyer et al. [13]
showed that a widely-used algorithm for managing population
health systematically underestimated the health needs of Black pa-
tients, affecting millions of individuals. Gallegos et al. [9] surveyed
bias in large language models, documenting stereotyping, toxicity,
and representational harms. Ferrara [8] examined the particular
challenges of bias in conversational AI. Park et al. [14] demonstrated
that generative agents can simulate human social behavior, raising
the question of whether human biases are faithfully reproduced—
or even amplified—in agent settings. Wang et al. [21] confirmed
this concern, showing that LLM agents exhibit intergroup bias and
that belief poisoning can reactivate bias suppressed by safety train-
ing. Chen et al. [4] surveyed fairness considerations specific to AI
agents, noting the gap between model-level and agent-level bias
evaluation.

Our work extends from model-level bias measurement to agent-
level decision bias in specific deployment contexts, using a simulation-
based risk analysis approach that can identify which domains and
conditions are most vulnerable.

2.3 Algorithmic Fairness Metrics
The algorithmic fairness literature has developed multiple com-
plementary metrics, each capturing a different aspect of equitable
treatment. Disparate impact ratio [18], the ratio of favorable out-
come rates between groups, is widely used in employment dis-
crimination law with a threshold of 0.8. Hardt et al. [11] proposed
equality of opportunity, requiring equal true positive rates across
groups. Chouldechova [5] proved an impossibility theorem show-
ing that, except in degenerate cases, calibration, false positive rate
balance, and false negative rate balance cannot simultaneously hold
when base rates differ between groups. This motivates evaluating
multiple metrics simultaneously rather than relying on any single
measure—a principle we follow in this work.

2.4 Adversarial Attacks on LLM Agents
The adversarial robustness of language models is an active area of
concern. Perez et al. [15] demonstrated that language models can
be used to red-team other language models, automatically discover-
ing prompts that elicit harmful behavior. Carlini et al. [3] showed
that aligned models remain vulnerable to adversarial inputs that
bypass safety training. In the agent context, belief poisoning [21]
represents a particularly concerning attack vector because it targets
the agent’s internal representations rather than its input/output
interface, potentially suppressing safety guardrails while reacti-
vating latent biases. Weidinger et al. [22] provided a taxonomy of
language model risks that includes discrimination and adversarial
manipulation, both of which are relevant to our framework.

3 METHODOLOGY
3.1 Scope and Framing
This work presents a parametric simulation framework for analyz-
ing intergroup bias risks in agent deployments. We do not evaluate
actual LLM agent systems or real deployment logs; rather, we model
plausible bias dynamics based on parameters calibrated from the

social psychology and algorithmic fairness literatures. The frame-
work serves as a risk analysis scaffold [22] that identifies which
deployment domains and conditions warrant the most empirical
scrutiny, guiding future experimental work with real agents.

3.2 Domain Models
We model five domains with specific parameters governing stakes,
harm severity, task complexity, and baseline group-differential deci-
sion rates (Table 1). These domains were selected to span a range of
stakes and decision types representative of current and near-term
agent deployments. Domain complexity 𝜅 modulates per-step noise
and bias accumulation rate during multi-step interactions.

Table 1: Domain configuration parameters. Base bias is the
difference in favorable decision rates between ingroup and
outgroup. Parameters are informed by domain-specific em-
pirical literature where available (Section 3.3); remaining
parameters are assumed based on domain characteristics.

Domain Stakes Harm Wt. Complexity Base Bias

Customer Service 0.30 0.30 0.40 0.050
Healthcare Triage 0.95 0.90 0.70 0.080
Content Moderation 0.60 0.50 0.50 0.070
Education 0.70 0.70 0.60 0.080
Hiring 0.90 0.80 0.80 0.130

3.3 Parameter Calibration
Domain parameters are informed by empirical findings where avail-
able, though they remain simplifications of complex real-world dy-
namics. We distinguish between empirically grounded and assumed
parameters.

Hiring (empirically grounded): Bertrand and Mullainathan [1]
found that resumes with White-sounding names received approx-
imately 50% more callbacks than those with African-American-
sounding names (absolute rates of approximately 9.7% vs. 6.5%).
Quillian et al. [16] meta-analyzed 28 field experiments and found
a persistent ∼36% relative gap in callback rates. Our hiring base
bias of 0.13 (ingroup rate 0.35, outgroup rate 0.22, a 37% relative
gap) is calibrated to this relative discrimination ratio from the Quil-
lian meta-analysis; the absolute rates are higher than real callback
rates to place them in a range where all fairness metrics remain
well-defined.

Healthcare (partially grounded): Hoffman et al. [12] found that
a substantial fraction of medical trainees held false beliefs about
biological differences between racial groups, leading to biased treat-
ment recommendations. The existence of healthcare bias is well-
documented, but our specific parameter values (base bias 0.08) are
not directly derived from any quantitative finding in the cited liter-
ature.

Content moderation, education, and customer service (as-
sumed): Parameters for these domains are based on qualitative
evidence of bias in each context—including disparate flagging rates
in content moderation [17], teacher expectation gaps [7], and ser-
vice quality differentials [10]—but the specific numerical values
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are assumed rather than empirically calibrated. Stakes and harm
weights reflect the relative severity of adverse outcomes in each do-
main. We examine the sensitivity of results to all parameter choices
in Section 3.9.

3.4 Bias Model
Agent decisions are modeled with group-dependent favorable rates.
Base bias 𝑏𝑏𝑎𝑠𝑒 (the difference in ingroup vs. outgroup favorable de-
cision rates) is amplified by cue strength 𝑐 and boosted by poisoning
rate 𝑝:

𝑏𝑒 𝑓 𝑓 = 𝑏𝑏𝑎𝑠𝑒 (1 + 2𝑐) + 0.3𝑝 (1)
The linear cue amplification term 2𝑐 reflects the finding that

intergroup bias scales with the salience of group-distinguishing
cues [20]. The additive poisoning term models the direct injection
of biased beliefs into the agent’s reasoning process [21], bypassing
cue-mediated pathways.

3.5 Multi-Step Horizon Model
Unlike a simple scaling factor, our horizon model simulates step-
by-step bias accumulation with feedback. At each step 𝑡 of the
interaction horizon of length ℎ, the cumulative bias updates via:

𝑏𝑡+1 = 𝑏𝑡 +
𝛼 · 𝑏𝑡
1 + 𝑡

+ 𝜖𝑡 , 𝜖𝑡 ∼ N(0, 0.02 · 𝜅) (2)

where 𝛼 = 0.015(1 + 𝜅) · 𝑓 is the accumulation rate modulated by
domain complexity 𝜅 and feedback strength 𝑓 (a domain-specific
parameter reflecting how strongly early decisions constrain later
ones), and 𝜖𝑡 represents per-step noise. This captures the intuition
that bias compounds through feedback loops but with diminishing
marginal growth. The feedback strength parameter 𝛼 varies by
domain because domains differ in how strongly early decisions
constrain later ones. For example, in healthcare triage, an early
under-triage decision means a patient waits longer, potentially
leading to symptom progression that further biases subsequent
assessments toward lower acuity. In contrast, customer service
interactions have weaker feedback: an initial curt response may
mildly affect the conversation tone but does not fundamentally
alter the service outcome.

3.6 Harm Scores
Harm scores weight the realized bias by domain stakes 𝑠 and harm
severity𝑤 :

𝐻 = (𝑟𝑖𝑛 − 𝑟𝑜𝑢𝑡 ) · 𝑠 ·𝑤 (3)
where 𝑟𝑖𝑛 and 𝑟𝑜𝑢𝑡 are the realized ingroup and outgroup favorable
decision rates. These are unitless proxy scores intended for relative
comparison across domains, not calibrated measures of real-world
harm. A harm score of 0.10 in healthcare triage and 0.01 in cus-
tomer service should be interpreted as indicating that the former
domain poses roughly an order of magnitude greater risk, not that
it produces exactly ten times the real-world harm.

3.7 Fairness Metrics
We evaluate three complementary fairness metrics to capture dif-
ferent aspects of equitable treatment:

Disparate impact ratio [18]: the ratio of favorable outcome
rates between outgroup and ingroup, 𝐷𝐼 = 𝑟𝑜𝑢𝑡/𝑟𝑖𝑛 . Values below

0.8 indicate potential illegal discrimination under U.S. employment
law.

Equal opportunity difference [11]: the difference in true posi-
tive rates between groups. For our binary decision model, this is
the difference in the rate at which deserving individuals receive
favorable outcomes: 𝐸𝑂 = 𝑇𝑃𝑅𝑖𝑛 −𝑇𝑃𝑅𝑜𝑢𝑡 . Values near zero indi-
cate equitable treatment of qualified individuals across groups. We
use domain-specific thresholds for binarizing outcomes, set to the
mean of each domain’s ingroup and outgroup base rates, so that
the classification is meaningful relative to each domain’s decision
rates.

Predictive parity: the difference in positive predictive values
between groups, 𝑃𝑃 = 𝑃𝑃𝑉𝑖𝑛 − 𝑃𝑃𝑉𝑜𝑢𝑡 . This measures whether a
favorable decision is equally likely to be correct regardless of group
membership.

Chouldechova [5] proved that when base rates differ between
groups, it is generally impossible to simultaneously satisfy calibra-
tion, balance for the positive class, and balance for the negative
class. This impossibility theorem motivates evaluating multiple
metrics simultaneously rather than relying on any single measure.

3.8 Transferability
Lab-to-deployment transfer ratios are computed by comparing bias
magnitudes under two parameter regimes: “lab” (high cue strength
𝑐 = 0.5, short horizon ℎ = 1) and “deployment” (moderate cues
𝑐 = 0.3, longer horizon ℎ = 20):

𝑇 =
𝑏𝑑𝑒𝑝𝑙𝑜𝑦

𝑏𝑙𝑎𝑏
(4)

Values 𝑇 < 1 indicate that lab settings overestimate deployment
bias (e.g., due to stronger explicit cues), while𝑇 > 1 would indicate
deployment amplification.

3.9 Null Model and Sensitivity Analysis
Null model. To verify that observed bias effects arise from the
structural parameters rather than statistical artifacts of the simu-
lation machinery, we run a null model with all base biases set to
zero (𝑏𝑏𝑎𝑠𝑒 = 0 for all domains) while keeping all other parameters
unchanged. Under the null model, any observed ingroup–outgroup
differences should be attributable solely to random noise.

Sensitivity analysis.A key concern with parametric simulation
is dependence on hand-chosen parameters. We address this by sys-
tematically varying each domain parameter (stakes, harm weight,
complexity, base bias) at ±25% and ±50% of its nominal value while
holding all other parameters fixed. This one-at-a-time sensitivity
analysis identifies which parameters most strongly influence the
key outputs (harm scores, bias magnitudes, and fairness metrics),
and whether the qualitative conclusions—particularly the ranking
of domains by risk—are robust to parameter uncertainty.

3.10 Statistical Design
All experiments use 100 agents with 500 interactions each, repli-
cated across 10 independent random seeds usingNumPy’s SeedSequence
for independent per-experiment random streams. We report means
± 95% confidence intervals computed using the 𝑡-distribution with
𝑑 𝑓 = 9 (appropriate for 𝑛 = 10 replicates), and Cohen’s 𝑑 effect
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sizes [6] computed as the mean ingroup–outgroup rate difference di-
vided by the pooled standard deviation of per-agent group rates. No
correction for multiple comparisons is applied across the 57+ tests;
however, all 𝑝-values are astronomically small (typically < 10−20)
and would remain significant even under conservative Bonferroni
correction. The sensitivity analysis adds a further layer of robust-
ness assessment beyond seed-level replication.

4 RESULTS
4.1 Domain Comparison

Table 2: Bias and harm across deployment domains (cue=0.3,
horizon=10). Values are mean ± 95% CI (𝑡-distribution, 𝑑 𝑓 = 9)
over 10 replicates. Cohen’s 𝑑 measures effect size using the
pooled SD of per-agent group rates.

Domain Bias Harm DI Ratio 𝑑

Cust. Svc. 0.081 ± 0.005 0.007 ± 0.000 0.905 1.50
Healthcare 0.136 ± 0.005 0.115 ± 0.004 0.849 2.27
Content Mod. 0.115 ± 0.008 0.035 ± 0.002 0.847 1.96
Education 0.133 ± 0.005 0.066 ± 0.002 0.848 2.29
Hiring 0.206 ± 0.004 0.149 ± 0.002 0.411 3.26

Figure 1: Bias magnitude (left) and harm score (right) across
deployment domains. Error bars indicate 95% CI over 10 repli-
cates.

Hiring shows the highest bias magnitude (0.206±0.004) and harm
score (0.149±0.002) due to combining the largest base bias gap (0.13)
with high stakes (𝑠 = 0.90). Healthcare triage also shows substantial
harm (0.115 ± 0.004), reflecting the highest stakes (𝑠 = 0.95) despite
a smaller base bias gap. All Cohen’s 𝑑 values exceed 1.5, indicating
large effect sizes across all domains (Figure 2).

4.2 Cue Strength
Bias increases monotonically with cue strength across all tested do-
mains (Figure 3), with healthcare triage and hiring showing steeper
slopes than customer service due to larger base biases.

4.3 Horizon Effects
The multi-step horizon simulation reveals modest but consistent
bias accumulation (Figure 4). In healthcare triage, mean bias in-
creases from 0.131±0.004 at horizon 1 to 0.143±0.009 at horizon 50,
representing an approximately 9% increase through compounding
effects.

Figure 2: Cohen’s 𝑑 effect sizes for intergroup bias by domain.
All effects are well above the “large” threshold (𝑑 = 0.8).

Figure 3: Bias magnitude increases monotonically with in-
tergroup cue strength. Shaded regions show 95% CI.

Figure 4: Bias (left) and harm (right) as a function of multi-
step interaction horizon for healthcare triage. Bias accumu-
lates through compounding feedback, increasing approxi-
mately 9% from horizon 1 to 50.

4.4 Multi-Domain Horizon Effects
Extending the horizon analysis to all five domains reveals that
the strength of horizon-dependent bias accumulation varies with
domain feedback strength (Figure 5). Hiring (feedback strength
0.6) and healthcare (feedback strength 0.8) show the steepest bias
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Figure 5: Bias as a function of interaction horizon across all
five domains. Domains with higher feedback strength exhibit
steeper horizon-dependent bias growth. Shaded regions show
95% CI.

growth over the horizon, consistent with their higher feedback
strength parameters. Customer service (feedback strength 0.2) shows
the weakest horizon effect.

4.5 Belief Poisoning

Figure 6: Belief poisoning amplifies both bias magnitude
(left) and harm (right). Error bars show 95% CI.

Figure 6 shows that belief poisoning at 30% rate increases bias
from 0.132 ± 0.005 to 0.227 ± 0.005, a relative increase of approxi-
mately 72%. At 50% poisoning, bias reaches 0.287± 0.005, represent-
ing a 117% relative increase over baseline. Harm scores increase
proportionally.

4.6 Transferability

Table 3: Lab-to-deployment transfer ratios by domain (mean
± 95% CI).

Domain Transfer Ratio Harm Amplification

Customer Service 0.810 ± 0.067 0.805 ± 0.057
Healthcare Triage 0.831 ± 0.054 0.828 ± 0.047
Content Moderation 0.813 ± 0.040 0.818 ± 0.044
Education 0.809 ± 0.050 0.815 ± 0.050
Hiring 0.812 ± 0.019 0.815 ± 0.016

Transfer ratios range from 0.809 ± 0.050 (education) to 0.831 ±
0.054 (healthcare), consistently below 1.0 across all domains (Table 3,

Figure 7: Lab-to-deployment transfer ratios by domain. All
ratios fall below 1.0, indicating lab settings overestimate de-
ployment bias. Error bars show 95% CI.

Figure 7). This indicates that lab settings—which use stronger inter-
group cues (𝑐 = 0.5)—systematically overestimate deployment bias,
though the deployment condition uses a longer horizon (ℎ = 20)
that partially compensates through cumulative effects. We note
that these transfer ratios reflect a within-model comparison of two
parameter regimes rather than genuinely different environments,
and their narrow range (0.81–0.83) is largely determined by the cue
strength ratio (1.6/2.0 = 0.80).

4.7 Null Model Results

Figure 8: Comparison of biasmagnitudes under the structural
model (nominal parameters) vs. the null model (𝑏𝑏𝑎𝑠𝑒 = 0).
Under the null model, bias is near zero across all domains.

Under the null model with all base biases set to zero, observed
bias magnitudes are near zero across all domains (mean < 0.007,
with disparate impact ratios > 0.99), and none of the five domains
show statistically significant bias (𝑝 > 0.39 for all domains). This
confirms that the bias effects reported in Table 2 arise from the
structural parameters of the model rather than from artifacts of
the simulation machinery. The null model also produces disparate
impact ratios near 1.0 and harm scores near zero, as expected.

4.8 Sensitivity Analysis
The sensitivity analysis reveals a clear hierarchy of parameter in-
fluence (Figure 9). Harm scores are most sensitive to the stakes
and harm weight parameters, which enter multiplicatively into
the harm equation (Eq. 3). Bias magnitude is primarily driven by
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Figure 9: Tornado diagram showing sensitivity of bias magni-
tude, harm score, and disparate impact ratio to ±50% pertur-
bation of each domain parameter for healthcare triage. Bias
magnitude is most sensitive to base bias (ranging from 0.074
to 0.200), while harm scores scale with all three parameters.

the base bias parameter, with complexity playing a secondary role
through the horizon feedback mechanism.

Critically, the qualitative finding that hiring and healthcare are
the highest-risk domains is robust to parameter perturbation at
±50%: even under the most conservative parameter settings, hiring
and healthcare remain in the top two positions by harm score. The
ranking of the remaining three domains (education, content mod-
eration, customer service) is more sensitive to parameter choices,
with education and content moderation trading ranks under some
perturbations.

4.9 Multi-Metric Fairness Comparison

Figure 10: Three fairness metrics across domains. Disparate
impact ratio (higher is fairer, threshold at 0.8), equal opportu-
nity difference, and predictive parity difference (both: lower
magnitude is fairer). Metrics agree on hiring as most prob-
lematic but diverge on relative ordering of other domains.

All three metrics identify hiring as the most problematic domain
(Table 4, Figure 10). Equal opportunity difference provides a comple-
mentary ranking: hiring shows the largest EO gap (0.926), followed
by healthcare (0.825), education (0.805), content moderation (0.756),
and customer service (0.672). This ranking correlates with base
bias magnitude but is not identical to the DI ranking, since EO de-
pends on how bias interacts with the domain-specific qualification
threshold. Predictive parity differences are small across all domains
(|𝑃𝑃 | < 0.03), indicating that among those receiving favorable out-
comes, the fraction of truly qualified individuals is similar across
groups. These results underscore the value of evaluating multiple
fairness criteria when auditing agent deployments, as each metric
highlights different aspects of the bias landscape.

Table 4: Multi-metric fairness comparison across domains.
DI = disparate impact ratio (threshold: 0.8); EO = equal op-
portunity difference (TPR gap among qualified individuals);
PP = predictive parity difference. Domain-specific thresholds
are used for binarizing outcomes, set to the mean of ingroup
and outgroup base rates.

Domain DI Ratio EO Diff. PP Diff.

Cust. Svc. 0.905 0.672 ± 0.050 0.029 ± 0.028
Healthcare 0.849 0.825 ± 0.029 −0.007 ± 0.025
Content Mod. 0.847 0.756 ± 0.050 −0.005 ± 0.028
Education 0.848 0.805 ± 0.029 −0.010 ± 0.025
Hiring 0.411 0.926 ± 0.028 −0.001 ± 0.018

5 DISCUSSION
Our results reveal domain-dependent risk profiles for agent inter-
group bias that are robust to parameter perturbation:

• Hiring poses the highest absolute harm risk, with the
largest bias magnitude (0.206) and harm score (0.149). Its
disparate impact ratio (0.411) falls far below the 0.8 thresh-
old, driven by the large base bias gap (0.13) and low base
rates that amplify relative disparities. All three fairness met-
rics converge on hiring as the most problematic domain,
making this finding particularly robust.

• Healthcare triage has the second-highest harm (0.115),
combining the highest stakes (𝑠 = 0.95) with a moderate
bias gap. Its disparate impact ratio (0.849) is just above
the 0.8 threshold, though this threshold was not designed
for healthcare contexts. Healthcare also shows the second-
highest equal opportunity difference (0.825), indicating sub-
stantial disparities in favorable outcomes among qualified
individuals.

• Customer service has the lowest harm but still exhibits
large effect sizes (𝑑 = 1.56), indicating that even low-stakes
domains produce substantial bias.

• Belief poisoning represents a critical adversarial threat.
A 30% poisoning rate increases bias by approximately 72%
relative to baseline, far exceeding the effect of doubling cue
strength alone. This aligns with Wang et al.’s [21] finding
that belief poisoning can suppress safeguards, and moti-
vates adversarial robustness testing as a deployment pre-
requisite.

The sensitivity analysis (Section 4.8) strengthens confidence in
these findings. The ranking of hiring and healthcare as highest-risk
domains is maintained across all tested parameter perturbations,
indicating that this conclusion does not depend on precise param-
eter values. Harm scores are most sensitive to stakes and harm
weight—parameters with clear real-world grounding—while bias
magnitude is driven primarily by base bias, which is informed by
empirical audit studies.

The comparison of fairness metrics reveals that relying on any
single metric can obscure important aspects of bias. While dis-
parate impact is the most widely used legal standard, equal oppor-
tunity difference—which measures the TPR gap among qualified
individuals—provides a complementary view that is sensitive to the
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interaction between bias magnitude and domain-specific qualifica-
tion thresholds. Predictive parity differences are small, indicating
that among those receiving favorable outcomes, qualification rates
are similar across groups. Deployers should evaluate multiple met-
rics, as each highlights different aspects of the bias landscape [5].

Transfer ratios below 1.0 across all domains suggest that minimal-
group lab paradigms with explicit cues provide conservative upper
bounds on deployment bias, which is encouraging for lab-based
auditing approaches. However, the gap between lab and deploy-
ment varies by domain (17% for healthcare vs. 19% for hiring and
education), emphasizing the need for domain-specific calibration.
We note that these transfer ratios represent a within-model compar-
ison of two parameter regimes, not a genuine lab-to-deployment
transfer study; the ratios are largely determined by the cue strength
ratio between conditions. Extending the horizon analysis to all
five domains confirms that high-complexity domains with stronger
feedback loops accumulate more bias over multi-step interactions,
reinforcing the need for horizon-aware evaluation.

Recommendations: (1) Domain-specific bias audits before de-
ployment, with hiring requiring the most stringent evaluation given
its DI ratio of 0.411; (2) adversarial testing against belief poisoning
at rates up to 30%; (3) continuousmonitoring usingmultiple fairness
metrics (disparate impact, equal opportunity, and predictive parity)
in production; (4) longer-horizon evaluation to capture cumulative
effects, particularly in high-complexity domains.

Future work. The most important next step is empirical vali-
dation using real LLM agent systems. This includes (1) deploying
agents in controlled task environments that mirror the five domains
studied here and measuring actual decision bias; (2) human-subject
studies to calibrate the relationship between simulated and ob-
served harm; and (3) longitudinal deployment monitoring to assess
how bias evolves over extended operational periods, particularly un-
der adversarial conditions. The sensitivity analysis presented here
can guide these empirical efforts by identifying which parameter
regimes and domains warrant the most urgent scrutiny.

5.1 Limitations
This work has several important limitations:

• Simulation-only evaluation. All results come from a
parametric simulation with hand-chosen domain parame-
ters. No actual LLM agents, real tasks, or deployment logs
are evaluated. The framework is a risk analysis scaffold, not
an empirical measurement of deployed agent bias.

• Unitless harm scores. Harm scores are weighted rate
gaps (𝐻 = (𝑟𝑖𝑛 − 𝑟𝑜𝑢𝑡 ) · 𝑠 ·𝑤 ), useful for relative compari-
son but not calibrated to real-world welfare outcomes. The
domain harm ranking is substantially determined by the
parameter choices for stakes and harm weight rather than
emergent from the simulation. For instance, the finding that
healthcare has high harm scores is largely a consequence
of assigning it high stakes (𝑠 = 0.95) and harm weight
(𝑤 = 0.90).

• Simplified transferability. “Lab” and “deployment” are
modeled as two parameter regimes (differing in cue strength
and horizon), not as genuinely different environments. The

transfer ratio is largely determined by the cue strength ra-
tio (1.6/2.0 = 0.80) and its narrow cross-domain range
(0.81–0.83) reflects this algebraic structure. Real lab-to-
deployment transfer involves distributional shift, task com-
plexity, and system integration effects not captured here.

• Parameter calibration. Only the hiring domain has ap-
proximate empirical calibration (via the relative discrimi-
nation ratio from Quillian et al. [16]). Healthcare, educa-
tion, content moderation, and customer service parameters
are informed by qualitative evidence of bias but the spe-
cific numerical values are assumed. The sensitivity analysis
identifies which parameters matter most, enabling targeted
empirical calibration.

• Linear model assumptions. The bias model (Eq. 1) as-
sumes linear dependence on cue strength and poisoning
rate, with hand-picked coefficients. Real bias dynamics may
exhibit saturation, threshold effects, or nonlinear interac-
tions. Key quantitative findings (e.g., the 72% poisoning
amplification at 30% rate) are direct algebraic consequences
of the 0.3 poisoning coefficient.

• Sensitivity analysis scope. The one-at-a-time sensitivity
analysis captures main effects but misses interaction effects
between parameters. Given the multiplicative structure of
the harm equation, joint parameter perturbations could
produce larger deviations than the OAT analysis suggests.

• No real agent evaluation. This is a risk scaffold identify-
ing where bias is likely to be most harmful, not a measure-
ment of howmuch bias real agents exhibit. The framework’s
value lies in guiding empirical priorities, not replacing em-
pirical evaluation.

6 CONCLUSION
We characterized the transferability and harms of agent intergroup
bias across five deployment domains using a parametric simula-
tion framework with null model validation and sensitivity analysis.
Hiring and healthcare triage present the highest risks, with harm
scores of 0.149±0.002 and 0.115±0.004 respectively—a ranking that
is robust to ±50% parameter perturbation. Only hiring exhibits a
disparate impact ratio below 0.8 (𝐷𝐼 = 0.411), and all three fairness
metrics converge on hiring as the most problematic domain, with
the highest equal opportunity difference (0.926). Lab-to-deployment
transfer ratios range from 0.81 to 0.83, indicating that lab measure-
ments provide conservative but domain-dependent overestimates.
Belief poisoning amplifies bias by approximately 72% at 30% at-
tack rate, motivating adversarial defenses. These findings provide
a risk analysis scaffold for prioritizing domain-specific bias audit-
ing in agent deployments, with the essential caveat that empirical
validation with real LLM agents remains the critical next step.
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