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ABSTRACT
Large language models exhibit strong generative and reasoning
capabilities, yet it remains unclear how these translate when mod-
els produce judgments and decisions intended to resemble human
choices. We present a computational framework that decomposes
LLM capability along two axes—reasoning depth and generative
fluency—and measures alignment with human decision baselines
across six classical behavioral economics tasks (framing effects,
anchoring, prospect theory, base-rate neglect, sunk cost fallacy, and
overconfidence). Using a mechanistic simulator with a Gaussian
alignment function, our model exhibits a non-monotonic relation-
ship: alignment peaks at intermediate reasoning depth (JSD = 0.008
at 𝑟 = 0.5) and degrades at both low (JSD = 0.043 at 𝑟 = 0.1) and
high reasoning levels (JSD = 0.085 at 𝑟 = 1.0), forming a U-shaped
curve. Generative fluency shows a weaker relationship with align-
ment (𝜌 = 0.489, 𝑝 = 0.15). We introduce task-specific effect-size
metrics that measure alignment on behaviorally relevant statis-
tics rather than flattened distributions. Bootstrap analysis over 200
resamples confirms the U-shape with non-overlapping 95% con-
fidence intervals between extremes and minimum. These results
demonstrate how a minimal mechanistic model generates the hy-
pothesis that behavioral alignment and reasoning capability may
be partially competing objectives, with implications for LLM-based
human simulation and agent design.

1 INTRODUCTION
Large language models demonstrate impressive generative and
reasoning performance across applications ranging from content
creation to code generation [15]. However, when LLMs are deployed
to produce judgments and decisions that should resemble human
choices—for instance in social simulations, behavioral research
surrogates, or decision-support systems—a fundamental question
arises: does stronger LLM capability imply greater human-likeness
in decision-making [9]?

This question has practical importance. LLM-based simulations
of human behavior are increasingly used for policy analysis [12],
behavioral research prototyping [1], and user modeling. If the map-
ping from capability to human-likeness is non-trivial, then simply
using the most capable model may not produce the most faithful
human simulation.

Prior work has shown that LLMs exhibit human-like cognitive
biases in some settings [3, 7] but depart from human patterns in
others. However, these studies treat LLM capability as a binary
(model X vs. model Y) rather than parametrically analyzing how
varying capability levels affect behavioral alignment.

We address this gap with a mechanistic simulation framework
and four contributions:

(1) A two-axis capability parameterization (reasoning depth 𝑟
and generative fluency 𝑔) with explicit alignment measure-
ment using true Jensen-Shannon divergence.

(2) Task-specific effect-size metrics that evaluate alignment
on behaviorally meaningful statistics (e.g., framing effect
magnitude, anchoring gap, continuation slope) rather than
flattened distributional comparisons.

(3) A demonstration that a minimal Gaussian alignment model
generates a non-monotonic (U-shaped) JSD curve across
reasoning levels, providing a concrete mechanistic hypoth-
esis for the capability-alignment trade-off.

(4) Per-task sensitivity analysis showing heterogeneous re-
sponses to capability variation.

We emphasize that our results characterize the model’s behavior,
not empirical findings about real LLMs. The framework serves as a
hypothesis generator for future empirical validation.

2 METHODS
2.1 Two-Axis Capability Model
We parameterize LLM decision behavior along two orthogonal
dimensions. Reasoning depth 𝑟 ∈ [0.1, 1.0] captures the capacity
for multi-step logical inference, from surface-level pattern matching
to formal deduction. Generative fluency 𝑔 ∈ [0.1, 1.0] captures
the ability to produce coherent, contextually appropriate text. These
axes are motivated by the observation that generative performance
(fluency, coherence) and reasoning performance (logical accuracy,
consistency) can develop at different rates in LLMs.

2.2 Non-Monotonic Alignment Function
The key modeling choice is a Gaussian alignment function:

𝛼 (𝑐; 𝜇, 𝜎) = exp
(
− (𝑐 − 𝜇)2

2𝜎2

)
(1)

where 𝑐 is the capability level, 𝜇 is the peak-alignment capability,
and 𝜎 controls the width. This function encodes the hypothesis
that alignment peaks at intermediate capability: at low capability
the model cannot reproduce human bias patterns, while at high
capability it overcomes biases through stronger reasoning.We stress
that the U-shaped alignment curve is a modeling assumption built
into the simulator, not an emergent discovery. The contribution lies
in demonstrating that this minimal mechanism produces consistent,
quantifiable predictions across diverse behavioral tasks.

2.3 Human Decision Baselines
We construct synthetic human baselines calibrated to established
behavioral economics findings:

• Framing effect: Risk-averse in gain frame (𝑝 = 0.62) vs.
loss frame (𝑝 = 0.27) [14].

• Anchoring bias: Estimates cluster around arbitrary an-
chors (𝜇low = 25, 𝜇high = 65) [13].

• Prospect theory: Loss aversion (𝜆 = 2.25) with diminish-
ing sensitivity (𝛼 = 0.88) [8].
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• Base-rate neglect: Systematic overestimation of posterior
probability [5].

• Sunk cost fallacy: Continuation probability increasing
with prior investment [2].

• Overconfidence: Stated confidence exceeding actual accu-
racy [6, 10].

Each task generates 𝑁 = 500 synthetic subjects.

2.4 Alignment Metrics
2.4.1 Jensen-Shannon Divergence (True Divergence). We measure
distributional alignment using the true Jensen-Shannon divergence [4,
11]. Importantly, scipy.spatial.distance.jensenshannon re-
turns the Jensen-Shannon distance 𝑑JS =

√︁
𝐷JS. We square this

value to obtain the actual divergence 𝐷JS = 𝑑2
JS, which is bounded

in [0, ln 2] for natural logarithm (or [0, 1] for base-2). All reported
JSD values are true divergences.

Crucially, for multi-variable tasks, we do not flatten all variables
into a single histogram. Instead:

• Framing: Average of JSD on gain-frame choices and loss-
frame choices separately.

• Anchoring: Average of JSD on low-anchor and high-anchor
estimate distributions.

• Sunk cost: JSD on the decision variable only (not the in-
vestment level, which is uniform by construction).

• Overconfidence: JSD on the overconfidence gap distribu-
tion (confidence − accuracy).

2.4.2 Task-Specific Effect-Size Metrics. We introduce effect-size
error (ESE) metrics that capture alignment on the behaviorally
relevant statistic for each task:

• Framing: |Δhuman − ΔLLM | where Δ = 𝑝gain − 𝑝loss.
• Anchoring: | (𝑥high − 𝑥low)human − (𝑥high − 𝑥low)LLM |.
• Prospect theory: Absolute difference in gamble accep-

tance rates.
• Base-rate neglect: Absolute difference in mean posterior

estimates.
• Sunk cost: Absolute difference in continuation-probability

slope (linear regression of decision on investment).
• Overconfidence: Absolute difference in mean overconfi-

dence gap.

These metrics replace the previously used decision-consistency
metric, which was degenerate for several tasks (e.g., always return-
ing 1.0 for anchoring and overconfidence due to median-threshold
artifacts on non-binary data).

3 EXPERIMENTS
3.1 Experiment 1: Reasoning Depth Sweep
We sweep 𝑟 ∈ {0.1, 0.2, . . . , 1.0} at fixed 𝑔 = 0.5 and compute
average JSD and effect-size error across all six tasks.

3.2 Experiment 2: Generative Fluency Sweep
We sweep 𝑔 ∈ {0.1, 0.2, . . . , 1.0} at fixed 𝑟 = 0.5 with the same
metrics.

Figure 1: Jensen-Shannon divergence (true divergence, not
distance) between simulated LLM and human decision dis-
tributions as a function of reasoning depth. Shaded region
shows 95% bootstrap CI. The U-shape reflects the Gaussian
alignment assumption.

3.3 Experiment 3: Bootstrap Confidence
Intervals

Bootstrap confidence intervals are computed from 200 resampled
experiments, each with independent random seeds.

3.4 Experiment 4: Per-Task Analysis
We analyze per-task JSD and effect-size error profiles across rea-
soning levels.

3.5 Experiment 5: Joint Sweep
We perform a full 10 × 10 grid sweep of (𝑟, 𝑔).

All experiments use np.random.seed(42) and 𝑁 = 500 sub-
jects/trials per condition.

4 RESULTS
4.1 Non-Monotonic Reasoning-Alignment

Curve
Figure 1 shows the relationship between reasoning depth and
human-like alignment produced by the simulator. The JSD de-
creases from 0.043 at 𝑟 = 0.1 to a minimum of 0.008 at 𝑟 = 0.5,
then increases to 0.085 at 𝑟 = 1.0. This U-shaped pattern is a direct
consequence of the Gaussian alignment function (Eq. 1), confirming
that the mechanistic model produces quantitatively distinct pre-
dictions across the capability range. The 95% bootstrap confidence
intervals do not overlap between the extremes and the minimum
(Table 1), indicating that the pattern is robust to sampling variabil-
ity.

4.2 Weak Fluency Effect
Generative fluency shows a weaker relationship with alignment
(Figure 2). The Pearson correlation between fluency and JSD is
𝜌 = 0.489 (𝑝 = 0.15), which does not reach statistical significance
at the 𝛼 = 0.05 level with 𝑛 = 10 points. We therefore describe this
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Figure 2: JSD as a function of generative fluency at fixed
reasoning depth. The weak positive trend (𝜌 = 0.489, 𝑝 = 0.15)
does not reach statistical significance.

Figure 3: Per-task JSD profiles across reasoning depth, com-
puted on behaviorally relevant variables for each task. Het-
erogeneous sensitivity patterns emerge.

as a trend rather than a confirmed association. The weak effect is
consistent with the model design, where fluency enters only as a
minor modulator of individual task parameters.

4.3 Per-Task Sensitivity
Figure 3 reveals heterogeneous task responses. Base-rate neglect
shows the largest JSD variation across reasoning levels, while fram-
ing and prospect theory show flatter profiles when measured on
their behaviorally relevant variables (rather than flattened arrays).
The anchoring task, measured via separate low-anchor and high-
anchor distributions, shows a clear U-shape driven by the anchoring
effect size changing with alignment.

4.4 Effect-Size Error Analysis
Figure 4 shows per-task effect-size error profiles. The anchoring
task dominates in absolute ESE because its effect size (high-anchor
mean − low-anchor mean) spans a much larger numerical range
than binary-choice tasks. Normalizing by human baseline effect

Figure 4: Per-task effect-size error across reasoning depth.
Each panel measures the absolute difference in the task-
specific behavioral statistic between simulated LLM and hu-
man baselines.

Figure 5: Joint capability-alignment landscape. The domi-
nant vertical gradient confirms reasoning as the primary
alignment driver in the model.

size would allow cross-task comparison; we present raw values to
preserve interpretability within each task.

4.5 Joint Capability Landscape
The joint heatmap (Figure 5) confirms that reasoning depth is the
dominant axis of alignment variation. The JSD gradient is steeper
along the reasoning axis compared to the fluency axis, consistent
with the correlation analysis.

4.6 Dual-Metric View
Figure 6 overlays JSD and average effect-size error on the same
reasoning-depth axis. Both metrics show their minimum near 𝑟 =
0.5, providing convergent evidence from distributional and point-
estimate perspectives. The Pearson correlation between reasoning
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Table 1: Summary of key results from themechanistic simula-
tor. JSD values are true Jensen-Shannon divergence (squared
JS distance). Bootstrap CIs from 200 resamples.

Metric Value 95% CI

Best reasoning level (𝑟∗) 0.50 —
JSD at 𝑟∗ 0.008 [0.006, 0.010]
JSD at 𝑟 = 0.1 0.043 [0.035, 0.046]
JSD at 𝑟 = 1.0 0.085 [0.078, 0.092]
Reasoning–JSD 𝜌 0.623 (𝑝 = 0.054)
Fluency–JSD 𝜌 0.489 (𝑝 = 0.15)
Best ESE reasoning level 0.50 —

Figure 6: Dual-metric view of the reasoning sweep: JSD (left
axis) and mean effect-size error (right axis) both minimize
near 𝑟 = 0.5.

and ESE is 𝜌 = 0.312 (𝑝 = 0.38), weaker than for JSD, reflecting
that effect-size errors are dominated by the anchoring task’s large
numerical range.

5 DISCUSSION
5.1 Model Properties, Not Empirical Findings
We emphasize that the U-shaped alignment curve is a property of our
simulator, not an empirical discovery about real LLMs. The Gauss-
ian alignment function (Eq. 1) explicitly encodes non-monotonicity.
The value of this exercise lies in three aspects: (1) demonstrating
that a minimal mechanistic model produces consistent, quantifi-
able predictions across six diverse behavioral tasks, (2) providing a
concrete hypothesis that can be tested with real LLM experiments,
and (3) establishing a measurement framework with corrected met-
rics (true JSD, task-specific effect sizes) that avoids the pitfalls of
flattened distributional comparison.

5.2 Corrected Metrics
Two methodological corrections substantially improve the mea-
surement framework:

True JSD vs. JS distance. The original implementation reported
JS distance (the square root of divergence) as “JSD.” Since 𝑑JS =

√︁
𝐷JS, the numerical values of true divergence are smaller (squared),

but the qualitative U-shape is preserved.
Task-specific alignment. For multi-variable tasks (sunk cost,

overconfidence, anchoring), computing JSD on flattened arrays
conflates the stimulus variable with the response variable. For ex-
ample, in the sunk cost task, the investment level is uniform by
construction in both human and LLM simulations, so a flattened
JSD is dominated by this shared component. Our revised metrics
evaluate alignment only on the decision-relevant variable or on the
task-specific effect size.

5.3 Implications for LLM-Based Behavioral
Simulation

If the non-monotonic pattern holds empirically, it implies that
the most capable model may not be the best proxy for human
decision-making. Practitioners designing LLM-based behavioral
simulations should consider calibrating the reasoning mode—e.g.,
via prompting strategy, decoding temperature, or chain-of-thought
depth—to match the target population’s behavioral profile rather
than maximizing raw capability.

5.4 Limitations
Our framework uses simulated rather than real LLM outputs, limit-
ing ecological validity. The two-axis decomposition is a simplifica-
tion of the multi-dimensional capability landscape. Human base-
lines are synthetic approximations calibrated to literature rather
than primary data. The Gaussian alignment function is one of many
possible choices; alternative shapes (e.g., sigmoid, piecewise linear)
could produce different quantitative predictions. Statistical power
is limited by 𝑛 = 10 capability levels for correlation analyses. Future
work should validate these patterns using actual LLM APIs across
model families and scales, and extend to additional decision tasks
and cultural contexts.

6 CONCLUSION
We have presented a mechanistic simulation framework demon-
strating a non-monotonic relationship between reasoning capa-
bility and human-like decision fidelity, with alignment peaking
at intermediate reasoning depth. The framework uses corrected
Jensen-Shannon divergence (true divergence, not distance) and task-
specific effect-size metrics to avoidmeasurement artifacts present in
prior flattened-distribution approaches. While the U-shape is built
into the model via the Gaussian alignment function, the framework
generates concrete, testable predictions and provides a measure-
ment toolkit for future empirical work comparing real LLM outputs
to human behavioral baselines.

REFERENCES
[1] Gati VAher, Rosa I Arriaga, andAdamTaumanKalai. 2023. Using Large Language

Models to Simulate Multiple Humans and Replicate Human Subject Studies.
International Conference on Machine Learning (2023), 337–371.

[2] Hal R Arkes and Catherine Blumer. 1985. The Psychology of Sunk Cost. Organi-
zational Behavior and Human Decision Processes 35, 1 (1985), 124–140.

[3] Marcel Binz and Eric Schulz. 2023. Turning Large Language Models into Cogni-
tive Models. arXiv preprint arXiv:2306.03917 (2023).

[4] DominikMEndres and Johannes E Schindelin. 2003. ANewMetric for Probability
Distributions. IEEE Transactions on Information Theory 49, 7 (2003), 1858–1860.



Non-Monotonic Alignment: How LLM Reasoning and Generative Capabilities Translate to Human-Like Decisions

[5] Gerd Gigerenzer and Ulrich Hoffrage. 1995. How to Improve Bayesian Reasoning
without Instruction: Frequency Formats. Psychological Review 102, 4 (1995),
684–704.

[6] Dale Griffin and Amos Tversky. 1992. The Weighing of Evidence and the Deter-
minants of Confidence. Cognitive Psychology 24, 3 (1992), 411–435.

[7] Thilo Hagendorff, Sarah Fabi, and Michal Kosinski. 2023. Human-like Intu-
itive Behavior and Reasoning Biases Emerged in Large Language Models but
Disappeared in ChatGPT. Nature Computational Science 3 (2023), 833–838.

[8] Daniel Kahneman and Amos Tversky. 1979. Prospect Theory: An Analysis of
Decision under Risk. Econometrica 47, 2 (1979), 263–291.

[9] Xiangjun Kong et al. 2026. Improving Behavioral Alignment in LLM Social Sim-
ulations via Context Formation and Navigation. arXiv preprint arXiv:2601.01546
(2026).

[10] Sarah Lichtenstein, Baruch Fischhoff, and Lawrence D Phillips. 1982. Calibration
of Probabilities: The State of the Art to 1980. Judgment under Uncertainty:

Heuristics and Biases (1982), 306–334.
[11] Jianhua Lin. 1991. Divergence Measures Based on the Shannon Entropy. IEEE

Transactions on Information Theory 37, 1 (1991), 145–151.
[12] Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy

Liang, and Michael S Bernstein. 2023. Generative Agents: Interactive Simulacra
of Human Behavior. arXiv preprint arXiv:2304.03442 (2023).

[13] Amos Tversky and Daniel Kahneman. 1974. Judgment under Uncertainty: Heuris-
tics and Biases. Science 185, 4157 (1974), 1124–1131.

[14] Amos Tversky and Daniel Kahneman. 1981. The Framing of Decisions and the
Psychology of Choice. Science 211, 4481 (1981), 453–458.

[15] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, and Denny Zhou. 2022. Chain-of-Thought Prompting Elicits Rea-
soning in Large Language Models. Advances in Neural Information Processing
Systems 35 (2022), 24824–24837.


	Abstract
	1 Introduction
	2 Methods
	2.1 Two-Axis Capability Model
	2.2 Non-Monotonic Alignment Function
	2.3 Human Decision Baselines
	2.4 Alignment Metrics

	3 Experiments
	3.1 Experiment 1: Reasoning Depth Sweep
	3.2 Experiment 2: Generative Fluency Sweep
	3.3 Experiment 3: Bootstrap Confidence Intervals
	3.4 Experiment 4: Per-Task Analysis
	3.5 Experiment 5: Joint Sweep

	4 Results
	4.1 Non-Monotonic Reasoning-Alignment Curve
	4.2 Weak Fluency Effect
	4.3 Per-Task Sensitivity
	4.4 Effect-Size Error Analysis
	4.5 Joint Capability Landscape
	4.6 Dual-Metric View

	5 Discussion
	5.1 Model Properties, Not Empirical Findings
	5.2 Corrected Metrics
	5.3 Implications for LLM-Based Behavioral Simulation
	5.4 Limitations

	6 Conclusion
	References

