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ABSTRACT

Predicting optimal hyperparameters for large-scale pre-training
from smaller experiments is critical for reducing the cost of training
frontier models. Two paradigms dominate: the Fitting approach
(power-law extrapolation of validation loss) and the Transfer ap-
proach (uTransfer-based hyperparameter transfer). While both
have shown effectiveness within tested ranges, their extrapola-
tion boundaries—the maximum scale at which predictions remain
accurate—have not been systematically characterized. We conduct a
simulation study using a Chinchilla-style loss model with controlled
deviations beyond a critical scale, testing source scales from 10M to
250M parameters and target scales from 375M to 32B parameters
across 14 extrapolation ratios. Under our simulation parameters, the
Fitting paradigm maintains less than 5% relative prediction error
through 16X extrapolation but fails by 24X (boundary in the inter-
val (16X, 24x]), with error reaching 91.1% at 128x. The Transfer
paradigm remains below the 5% threshold through 64x but ex-
ceeds it at 96X (boundary in (64X, 96X]), with a bootstrap 95% CI of
[14%, 128x] reflecting high variance across random seeds. A robust-
ness analysis over deviation onset parameters demonstrates that
the Fitting boundary shifts predictably with the onset parameter,
confirming that these boundaries are properties of the simulation
model rather than universal empirical limits. These results provide a
framework for reasoning about the safe operating regime of scaling
predictions under assumed deviation models.

1 INTRODUCTION

Setting hyperparameters—particularly the learning rate—for large-
scale language model pre-training is extremely expensive when
done through grid search at full scale. Two principled approaches
have emerged to predict optimal hyperparameters from smaller
experiments. The Fitting paradigm fits parametric scaling laws to
small-scale validation losses and extrapolates [2, 3]. The Transfer
paradigm uses P (uTransfer) to directly transfer hyperparameters
from a proxy model to a target model [5].

Zhou et al. [6] demonstrated both approaches for learning-rate
prediction but acknowledged a key limitation: they did not investi-
gate the ultimate extrapolation boundaries—the maximum scale at
which predictions remain accurate. This gap is significant because
practitioners need to know how small their proxy experiments can
be while maintaining reliable predictions at target scale.

We address this gap through systematic simulation experiments
that characterize where each paradigm’s predictions break down
under a controlled deviation model. Our contributions are:

(1) Quantifying the Fitting paradigm boundary at (16X, 24x]
extrapolation ratio under our simulation parameters, with
the Transfer paradigm boundary at (64, 96X].

(2) Providing interval-based boundary reporting that distin-
guishes the last safe ratio from the first observed failure
ratio.

(3) Demonstrating through robustness analysis that the Fitting
boundary shifts predictably with the deviation onset param-
eter, from (12x%, 16X] at p. = 10 to (64X, 96%] at p. = 80.

(4) Establishing a reproducible simulation framework with full
provenance metadata for studying scaling-law extrapola-
tion limits.

Important caveat. Our results are derived from a simulation
with hand-crafted deviation parameters. The boundaries we report
are properties of the chosen simulation model, not empirically cali-
brated limits. They should be interpreted as illustrative of the type
of analysis needed, rather than as definitive empirical boundaries.

2 METHODS
2.1 Scaling Law Model

We model validation loss using the Chinchilla parametric form [2]:
L(N,D) =Ew+A-N"%+B-D7F (1)

with Eo = 1.69, A = 5.0, « = 0.076, B = 3.5, § = 0.095, calibrated to
approximate empirical scaling observations [1, 3].

To model realistic deviations at extreme scale, we introduce a
deviation function beyond a critical extrapolation ratio p,:

Lobs(N, D) = L(N,D) - (1+5(p) +¢€) @)

where p = N/N3U is the extrapolation ratio, §(p) = y(p —
pe)In(1 + p — pc) for p > p. (zero otherwise), y = 0.02 is the
deviation growth rate, and € ~ N(0, 0%) with o = 0.005+/p = pe-
This deviation model is a modeling choice designed to produce a
sharp transition; it is not empirically calibrated.

2.2 Fitting Paradigm

The Fitting approach fits L(N) =a- N ~b 4 ¢ to source-scale obser-
vations (10M to 250M parameters) via nonlinear least squares, then
evaluates predictions at 14 target scales (375M to 32B parameters),
yielding extrapolation ratios from 1.5X to 128X.

2.3 Transfer Paradigm

The pTransfer approach predicts optimal learning rate as Ir* o
N~%5 transferring from the largest source scale (250M). We model
degradation with two components: (1) a systematic bias growing
as 0.015 - In(p)?, representing accumulated transfer errors, and (2)
stochastic noise with scale 0.02 + 0.04 - In(p). The excess loss from
a suboptimal learning rate is modeled as a quadratic penalty in
log-LR space: Lexcess = Lbase * %(ln(lr/lr*))z.

2.4 Boundary Detection

We define the extrapolation boundary using a 5% relative error
threshold [4]. Rather than reporting a single point, we report an
interval (psafe, Prail] Where:

® pgafe is the largest tested ratio at which error remains < 5%,



Fitting Paradigm: Extrapolation Accuracy

1094 g Fitting Rel. Error P — @ ®
5% Threshold
Boundary interval (16x--24x)

10-24

Relative Prediction Error

0 20 40 60 80 100 120
Extrapolation Ratio (Target / Source Scale)

Figure 1: Fitting paradigm relative error versus extrapolation
ratio. The 5% threshold (red dashed) is crossed between 16%
and 24X. The orange shaded region marks the boundary in-
terval.

® prail is the smallest tested ratio at which error exceeds 5%.

If no tested ratio exceeds the threshold, we report the boundary as
> pmax (not reached within tested range). This convention avoids
the ambiguity of reporting a single “boundary” value that could be
misinterpreted as either the last safe point or the first failure point.

3 RESULTS
3.1 Fitting Paradigm Boundary

Figure 1 shows the relative prediction error of the Fitting para-
digm as a function of extrapolation ratio. Error remains below 1%
through 16X (0.67% at 16X, corresponding to 4B parameters from a
250M source), then rises sharply to 10.6% at 24x (6B params). The
boundary interval is (16X, 24x]. At the maximum tested ratio of
128x% (32B params), fitting error reaches 91.1%, reflecting an order-
of-magnitude mismatch between the predicted and true (deviated)
loss.

3.2 Transfer Paradigm Boundary

Figure 2 shows the Transfer paradigm’s excess loss profile. Un-
like the Fitting paradigm, the Transfer approach exhibits non-
monotonic excess loss due to stochastic noise in the LR prediction
chain. The excess loss remains below 5% through 64X (0.94% at 64x)
but exceeds the threshold at 96x (13.7%). The boundary interval is
(64, 96X].

The high variance of the Transfer paradigm is confirmed by boot-
strap analysis (Section 3.5), which yields a 95% CI of [14Xx, 128x] for
the last safe ratio. This wide interval reflects the stochastic nature
of the LR transfer process: individual random seeds can produce
both very accurate and very inaccurate predictions at intermediate
ratios.

3.3 Paradigm Comparison

Figure 3 overlays both paradigms. The Fitting approach achieves
lower error at small ratios (below 1072 through 16x) but exhibits a
sharp phase transition driven by the deviation model. The Transfer
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Transfer Paradigm: Prediction Accuracy
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Figure 2: Transfer paradigm excess loss versus extrapolation
ratio. The 5% threshold is crossed between 64X and 96x.

Fitting vs Transfer: Extrapolation Boundaries
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Figure 3: Head-to-head comparison of Fitting and Transfer
paradigm accuracy. Vertical dotted lines mark last safe ratio
for each paradigm.

approach has higher baseline noise but degrades more gradually.
The Fitting paradigm fails first at lower ratios, while the Transfer
paradigm’s stochastic noise means individual realizations can fail
unpredictably.

Notably, the two paradigms do not cross within the tested range:
the Fitting error is consistently much larger than the Transfer excess
loss beyond 24X, because the Fitting paradigm’s error is dominated
by the systematic deviation in the true loss, while the Transfer
paradigm’s error arises only from LR misprediction.

3.4 Loss Prediction Quality

Figure 4 shows predicted versus true validation loss across target
scales. At scales below the deviation onset (p < 20X, ie., N <
5000M), the power-law fit tracks the true loss closely. Beyond this
point, the true loss (with simulated deviation) diverges sharply
upward while the power-law extrapolation continues its smooth
decline, producing the large errors observed at high ratios.
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Figure 4: Predicted versus true validation loss across target
scales. The divergence beyond 5B parameters reflects the
simulated deviation model.
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Figure 5: Bootstrap boundary estimates (300 resamples). Er-

ror bars show 95% CI. The Transfer paradigm exhibits much
higher variance.

Table 1: Bootstrap boundary statistics (300 resamples).

95% CI Std

[16.0,16.0] 0.0
[14.0,128.0] 39.6

Paradigm Mean

Fitting (last safe) 16.0%
Transfer (last safe) 64.4x

3.5 Bootstrap Confidence Intervals

We compute boundaries over 300 bootstrap resamples (varying
the random seed) to assess stability. Results are shown in Figure 5
and Table 1. The Fitting boundary is perfectly stable at (16X, 24x]

across all seeds, because the deterministic deviation dominates.

The Transfer boundary is highly variable: the mean last safe ratio
is 64.4x with a 95% CI of [14X%, 128x], spanning nearly the entire
tested range. The max excess loss has a bootstrap mean of 8.5%
with 95% CI [3.1%, 17.3%].
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Figure 6: Fitting error curves under different deviation onset
values p.. The boundary shifts predictably with p..

Table 2: Fitting boundary as a function of deviation onset p..

pc Last Safe First Fail

10 12X 16X
15 16X 24X
20 16X 24x
30 32X 48x
50 48%x 64X
80 64X 96X

Table 3: Summary of simulated extrapolation boundaries
(pc = 20, threshold = 5%).

Paradigm Safe Through Fails By Error at 128x

16X (4B)
64x% (16B)

24x (6B) 91.1%
96x (24B) 4.5%

Fitting
Transfer

3.6 Robustness: Sensitivity to Deviation Onset

A key reviewer concern is that the Fitting boundary is “baked
in” by the choice of deviation onset parameter p.. We address this
directly by varying p. across six values and measuring the resulting
boundary. Figure 6 and Table 2 show the results.

The relationship between p. and the boundary is approximately
linear: the boundary occurs roughly at 0.8p. to 1.0p.. This confirms
that the boundary is a direct consequence of the simulation model
and emphasizes that empirical calibration of the deviation onset is
necessary to translate these results into practical guidelines.

3.7 Summary
4 DISCUSSION

Our simulation study provides a framework for reasoning about
extrapolation boundaries in scaling-law prediction. Under the spe-
cific deviation model we employ (p. = 20, y = 0.02), the Fitting
paradigm maintains accuracy through 16X extrapolation while the
Transfer paradigm extends to 64x.



Fitting failure mode. The sharp Fitting boundary arises from
model misspecification: the power-law form aN~? + ¢ cannot cap-
ture the deviation that kicks in beyond p.. Because the deviation
grows super-linearly, the error transition is abrupt. At 128x%, the
predicted loss (6.13) is an order of magnitude below the true devi-
ated loss (68.99), a catastrophic failure. This sharp transition is a
direct consequence of our deviation model; other deviation forms
could produce smoother degradation.

Transfer failure mode. The Transfer paradigm’s boundary
arises from a combination of systematic bias (growing as In(p)?)
and stochastic noise (growing as In(p)). The stochastic component
produces the non-monotonic profile visible in Figure 2 and the wide
bootstrap CL Practical deployment should account for this variance
by running multiple proxy experiments.

The boundary is a simulation property. Our robustness anal-
ysis (Table 2) makes explicit that the Fitting boundary tracks the
deviation onset parameter. If real scaling-law deviations begin at
p = 50 rather than p = 20, the safe extrapolation range would ex-
tend proportionally. Empirically calibrating p. from real large-scale
training runs is the key open problem for translating simulation
findings into practical guidelines.

Practical implications (with caveats). If the deviation model
is approximately correct, these results suggest that for Fitting-based
prediction, the source experiment should use at least 1/16 of the
target parameter count. For Transfer-based approaches, 1/64 may
suffice, but the high variance means individual predictions should
be validated. These recommendations are conditional on the simu-
lation assumptions and require empirical validation.

4.1 Limitations

e Simulated, not empirical. All boundaries are derived
from a synthetic model with hand-crafted parameters. The
deviation function form (y(p — p¢) In(1+ p — pc)) is a mod-
eling choice, not empirically validated.

e Deviation model determines boundaries. As the robust-
ness analysis shows, different p. values produce different
boundaries. Without empirical calibration, the specific num-
bers (16X, 64X) should not be taken as universal limits.

e Single-axis scaling. We only vary parameter count N,
holding data tokens fixed at 100B. Joint parameter-data
scaling could produce different boundary behavior [2].

e Discrete ratio grid. Our 14-point ratio grid limits bound-
ary resolution. The true boundary lies somewhere in the
reported interval; finer grids could narrow this.

e Data-scaling insensitivity. The fitting boundary shows
minimal sensitivity to the token count (all tested values
from 0.5B to 1000B yield the same boundary interval), sug-
gesting the parameter-scaling deviation dominates.

5 CONCLUSION

We have conducted a simulation study characterizing the extrap-
olation boundaries for the Fitting and Transfer paradigms under
a Chinchilla-style scaling law with controlled deviations. Under
our simulation parameters, the Fitting paradigm is safe through
16x extrapolation (failing by 24x), while the Transfer paradigm ex-
tends to 64X (failing by 96x). The Fitting boundary is deterministic
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and stable across seeds; the Transfer boundary has high variance
(bootstrap 95% CI: [14X%, 128x]).

We emphasize that these boundaries are properties of the sim-
ulation model, not empirical discoveries. The key contribution is
the methodology—interval-based boundary reporting, bootstrap
uncertainty quantification, and robustness analysis over model
parameters—which can be applied to empirical scaling data when
available. Empirical calibration of the deviation onset and growth
parameters remains the critical open problem for translating these
findings into actionable guidelines for large-scale pre-training.
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