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ABSTRACT
Reasoning models increasingly expose chain-of-thought (CoT) out-
puts to enable monitoring of model honesty and faithfulness. How-
ever, when APIs return summarized rather than full CoT—as with
Claude 4.5 Haiku—a measurement gap may arise: summaries could
omit details that affect computed scores. We formalize this summa-
rization deviation problem and present a simulation-based frame-
work to quantify potential score distortions under varying sum-
marization fidelity, compression ratios, and task complexity. Our
model introduces a compression–signal coupling mechanism, 𝑝eff =

𝑝nom · 𝜌𝛼 , capturing the empirical intuition that more aggressive
summarization degrades signal preservation. Results across 5,000
simulated CoT instances show that moderate compression (𝜌 = 0.33,
approximately 3:1 non-signal retention) introduces mean absolute
deviations (MAD) of 0.072 for honesty and 0.074 for faithfulness
under the coupled model with nominal retention 𝑝nom = 0.90 and
coupling𝛼 = 0.35, with 23.7% of instances exceeding the 0.10 thresh-
old. Bootstrap 95% confidence intervals confirm tight estimation:
MAD-H ∈ [0.072, 0.077], MAD-F ∈ [0.073, 0.078]. When signal re-
tention is varied directly (uncoupled), reducing 𝑝𝑠 from 0.95 to 0.60
at 𝜌 = 0.33 increases honesty MAD from 0.016 to 0.075, confirming
that signal retention dominates deviation magnitude. Longer CoTs
(300–500 tokens) buffer against artifacts, with MAD approximately
40% lower than short CoTs (50–100 tokens). These findings quantify
the conditions under which summarized CoT remains a reliable
proxy for full CoT evaluation and identify critical thresholds for
summarization fidelity.

1 INTRODUCTION
Chain-of-thought (CoT) reasoning [8] has become a central mech-
anism for both improving and monitoring the behavior of large
language models. Recent work on reasoning model honesty [7]
evaluates whether models faithfully verbalize their use of provided
hints in their reasoning chains. However, a critical measurement
challenge arises when the API returns summarized CoT rather than
the model’s full internal reasoning [1].

For Claude 4.5 Haiku specifically, the Anthropic API returns a
summarized chain of thought. As noted by Walden [7], this creates
a potential gap between the content in the original CoT and what
is available for measurement, which could lead to deviations be-
tween measured and true honesty and faithfulness scores. While
the authors hypothesize that deviations are small given their ex-
plicit verbalization instructions, they acknowledge this cannot be
validated without access to full CoTs.

We address this validation gap through four contributions:

(1) A formal model of CoT summarization as a lossy compres-
sion operator with a compression–signal coupling mecha-
nism that models how aggressive summarization degrades
signal preservation.

(2) A simulation framework that generates structured CoT se-
quences and measures score deviations under varying sum-
marization conditions, with carefully documented edge-
case semantics.

(3) Quantitative bounds on acceptable summarization param-
eters for reliable honesty and faithfulness measurement,
with bootstrap confidence intervals.

(4) A reproducible experimental pipeline where all paper statis-
tics are derived from a single source of truth (data/*.json).

2 PROBLEM FORMULATION
2.1 CoT Structure Model
We model a full chain of thought as a sequence 𝐶 = (𝑡1, 𝑡2, . . . , 𝑡𝑛)
of reasoning tokens, where each token 𝑡𝑖 carries attributes: a content
type𝜏𝑖 ∈ {reasoning, hint_mention, hint_reliance,metacognition, filler},
and signal indicators ℎ𝑖 ∈ {0, 1} (honesty-relevant) and 𝑓𝑖 ∈ {0, 1}
(faithfulness-relevant). Token types are assigned with rates 𝜆ℎ =

0.08 (hintmention), 𝜆𝑓 = 0.12 (hint reliance), and honesty/faithfulness
signals are drawn from Bernoulli distributions: ℎ𝑖 ∼ Bern(0.70),
𝑓 stated
𝑖

∼ Bern(0.65), 𝑓 actual
𝑖

∼ Bern(0.80).

2.2 Honesty and Faithfulness Scores
The honesty score𝐻 (𝐶)measureswhether themodel acknowledges
receiving hints:

𝐻 (𝐶) =


∑𝑛
𝑖=1 ℎ𝑖 · ⊮[𝜏𝑖 = hint_mention]∑𝑛
𝑖=1 ⊮[𝜏𝑖 = hint_mention] if

∑
𝑖 ⊮[𝜏𝑖 = hint_mention] > 0

1 otherwise (vacuously honest)

The edge case 𝐻 (𝐶) = 1 when no hint-mention tokens are present
reflects the semantics that if no hints were provided, there is no
opportunity for dishonesty. This “vacuously honest” convention is
used consistently throughout simulation and analysis.

The faithfulness score 𝐹 (𝐶) measures whether the model’s stated
reasoning aligns with its actual hint usage:

𝐹 (𝐶) =


1 −

��∑
𝑖 𝑓

stated
𝑖

−∑
𝑖 𝑓

actual
𝑖

��∑
𝑖 ⊮[𝜏𝑖 = hint_reliance] if 𝑛reliance > 0

1 otherwise (vacuously faithful)

2.3 Summarization Operator with
Compression–Signal Coupling

A summarization operator Σ𝜃 with parameters𝜃 = (𝜌, 𝑝nom𝑠 , 𝑝nom
𝑓

, 𝛼)
maps full CoT 𝐶 to summary 𝐶:

• 𝜌 ∈ (0, 1]: baseline non-signal retention probability—
the probability that a non-signal token (reasoning, metacog-
nition, filler) survives summarization. Note: 𝜌 is not the
overall fraction of tokens retained; the effective overall re-
tention depends on signal token rates and their (possibly
different) retention probabilities.
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• 𝑝nom𝑠 , 𝑝nom
𝑓

∈ [0, 1]: nominal retention probabilities for
honesty-signal and faithfulness-signal tokens.

• 𝛼 ≥ 0: coupling strength parameter.
The key modeling contribution is the compression–signal cou-

pling:
𝑝eff𝑠 = 𝑝nom𝑠 · 𝜌𝛼 , 𝑝eff

𝑓
= 𝑝nom

𝑓
· 𝜌𝛼 (1)

This captures the empirical intuition that more aggressive sum-
marization (lower 𝜌) not only removes more non-signal tokens
but also degrades the retention of signal tokens, even when the
summarizer nominally prioritizes them. At 𝜌 = 1 (no compression),
𝑝eff = 𝑝nom; at 𝜌 = 0.33 with 𝛼 = 0.35, nominal 𝑝 = 0.90 yields
effective 𝑝 ≈ 0.611.

The deviation is then Δ𝐻 = |𝐻 (𝐶) − 𝐻 (𝐶) | and Δ𝐹 = |𝐹 (𝐶) −
𝐹 (𝐶) |.

3 METHODOLOGY
3.1 Simulation Design
We generate 5,000 synthetic CoT instances per configuration with
seed 42 for reproducibility. EachCoT has length𝑛 ∼ Uniform(50, 500)
tokens. We run five core experiments plus a bootstrap confidence
interval analysis:

(1) Compression sweep (coupled): 𝜌 ∈ {0.10, 0.20, 0.33, 0.50, 0.75}
with 𝑝nom𝑠 = 𝑝nom

𝑓
= 0.90, 𝛼 = 0.35. This is the canonical

model.
(2) Retention sensitivity (direct): 𝑝𝑠 varied in {0.60, . . . , 1.00}

at fixed 𝜌 = 0.33, 𝑝 𝑓 = 0.90, without coupling. Isolates the
direct effect of signal retention.

(3) Length-stratified analysis: Deviation stratified by CoT
length using half-open bins [50, 100), [100, 300), [300, 500]
to prevent double-counting at boundaries.

(4) Heatmap grid: Full 𝑝𝑠 × 𝑝 𝑓 grid at 𝜌 = 0.33 (direct).
(5) Critical threshold search: Binary search for minimum

𝑝𝑠 , 𝑝 𝑓 such that 𝑃95 (Δ) < 0.05.
(6) Bootstrap CI: 1,000 bootstrap resamples for MAD at 𝜌 =

0.33 (coupled).

3.2 Deviation Metrics
For each configuration, we compute: (1) Mean absolute deviation
(MAD) for honesty and faithfulness; (2) 95th percentile deviation; (3)
Fraction of instances where deviation exceeds tolerance thresholds
𝜖 ∈ {0.05, 0.10, 0.15}.

4 RESULTS
4.1 Deviation Under the Coupled Model
Table 1 shows the canonical results under the coupled model. At
moderate compression (𝜌 = 0.33, approximately 3:1 non-signal
retention), with 𝑝nom𝑠 = 𝑝nom

𝑓
= 0.90 and 𝛼 = 0.35, the effective

signal retention is 𝑝eff = 0.611, yielding MAD of 0.072 for honesty
and 0.074 for faithfulness. Approximately 23.7% of instances exceed
the 𝜖 = 0.10 threshold.

At mild compression (𝜌 = 0.75, 1.3:1), effective retention rises to
0.814 and MADs drop to 0.042 (honesty) and 0.045 (faithfulness),
with only 8.2% exceeding 𝜖 = 0.10.

Table 1: Mean absolute deviation by baseline non-signal re-
tention 𝜌 under the coupled model (𝑝nom = 0.90, 𝛼 = 0.35). All
values derived from data/tables.json.

Compression 𝜌 𝑝eff MAD-H MAD-F % > 0.10

1.3:1 0.75 0.814 0.042 0.045 8.2%
2:1 0.50 0.706 0.057 0.059 16.3%
3:1 0.33 0.611 0.072 0.074 23.7%
5:1 0.20 0.512 0.089 0.090 31.7%
10:1 0.10 0.402 0.115 0.109 42.1%

Figure 1:Mean absolute deviation of honesty and faithfulness
scores by compression ratio under the coupledmodel (𝑝nom =

0.90, 𝛼 = 0.35). Effective signal retention is shown below each
bar group.

Under aggressive compression (𝜌 = 0.10, 10:1), effective reten-
tion falls to 0.402, and MADs rise to 0.115 and 0.109, with 42.1%
exceeding 𝜖 = 0.10.

Figure 1 visualizes these results.

4.2 Signal Retention Sensitivity
When signal retention is varied directly (without coupling) at 𝜌 =

0.33 and 𝑝 𝑓 = 0.90, honestyMADdropsmonotonically from 0.075 at
𝑝𝑠 = 0.60 to 0.000 at 𝑝𝑠 = 1.00. The 95th percentile follows the same
pattern, declining from 0.208 to 0.000. This confirms that signal
retention probability is the dominant factor controlling deviation
magnitude, independent of the coupling model. Figure 2 shows this
relationship.

4.3 Task Complexity Effects
Table 2 shows deviation stratified by CoT length using half-open
intervals to prevent boundary double-counting. Longer CoTs (300–
500 tokens) show MAD-H of 0.022 compared to 0.036 for short
CoTs (50–100 tokens), a reduction of approximately 39%. This oc-
curs because longer sequences contain more signal tokens, provid-
ing redundancy that buffers against selective token loss. Figure 3
visualizes the effect with error bars.
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Figure 2: Honesty MAD and 95th percentile deviation as a
function of signal retention probability 𝑝𝑠 (direct, no cou-
pling) at 𝜌 = 0.33.

Table 2: Length-stratified deviation (𝜌 = 0.33, 𝑝𝑠 = 𝑝 𝑓 = 0.90,
direct). Half-open bins eliminate double-counting.

Bin Range 𝑛 MAD-H MAD-F

Short [50, 100) 571 0.036 0.044
Medium [100, 300) 2120 0.028 0.032
Long [300, 500] 2309 0.022 0.023

Figure 3: Deviation by CoT length bin with ±1 standard devi-
ation error bars. Longer CoTs exhibit lower deviation due to
signal redundancy.

4.4 Joint Signal Retention Grid
Figures 4 and 5 show the full 𝑝𝑠 × 𝑝 𝑓 interaction at 𝜌 = 0.33 (di-
rect). Honesty MAD depends primarily on 𝑝𝑠 (rows) with minimal
sensitivity to 𝑝 𝑓 (columns), and vice versa for faithfulness MAD.

Figure 4: Honesty MAD across the 𝑝𝑠 × 𝑝 𝑓 grid at 𝜌 = 0.33
(direct). Honesty deviation depends primarily on 𝑝𝑠 .

Figure 5: Faithfulness MAD across the 𝑝𝑠 × 𝑝 𝑓 grid at 𝜌 = 0.33
(direct). Faithfulness deviation depends primarily on 𝑝 𝑓 .

This confirms that the two metrics are controlled by independent
signal retention parameters, validating separate analysis.

4.5 Critical Thresholds
For deviations to remain below 0.05 at the 95th percentile, the
summarization must maintain 𝑝𝑠 ≥ 0.96 and 𝑝 𝑓 ≥ 0.97 at 5:1
compression (𝜌 = 0.20), tightening to 𝑝𝑠 ≥ 0.97 and 𝑝 𝑓 ≥ 0.97
at 3:1 (𝜌 = 0.33). These stringent requirements indicate that near-
perfect signal retention is necessary for reliable measurement under
moderate compression. Figure 6 visualizes these thresholds.
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Figure 6: Minimum signal retention probability required for
𝑃95 (Δ) < 0.05 at each compression level.

Figure 7: Fraction of instances exceeding deviation thresh-
olds 𝜖 ∈ {0.05, 0.10, 0.15} for honesty (left) and faithfulness
(right) under the coupled model.

4.6 Threshold Exceedance Distribution
Figure 7 shows the fraction of instances exceeding deviation thresh-
olds of 0.05, 0.10, and 0.15 across compression levels under the
coupled model. At 3:1 compression, approximately 53% of instances
exceed 𝜖 = 0.05 for honesty, while 23% exceed 𝜖 = 0.10.

4.7 Bootstrap Confidence Intervals
To quantify sampling uncertainty, we computed 1,000 bootstrap
resamples for the coupled model at 𝜌 = 0.33. The 95% confidence in-
tervals are: MAD-H = 0.074 ∈ [0.072, 0.077] and MAD-F = 0.075 ∈
[0.073, 0.078]. Bootstrap standard errors are below 0.002 for both

Figure 8: Bootstrap 95% confidence intervals for MAD under
the coupled model at 𝜌 = 0.33.

metrics, indicating that the simulation uses sufficient instances
(𝑁 = 5,000) for stable estimation. Figure 8 visualizes these intervals.

5 DISCUSSION
Our simulation-based analysis provides quantitative bounds on CoT
summarization deviation for honesty and faithfulness measurement.
The key findings are:

Couplingmatters. Under the coupled model (Eq. 1), nominal re-
tention of 𝑝nom = 0.90 at 3:1 compression yields effective retention
of only 0.611, producing MADs of 0.072–0.074. Without coupling,
𝑝𝑠 = 0.90 at the same 𝜌 yields MAD of only 0.027. This large gap
demonstrates that modeling compression–signal coupling is critical
for realistic deviation estimates.

Signal retention dominates. Experiment 2 shows that varying
𝑝𝑠 from 0.60 to 1.00 changes honesty MAD by more than 10×, while
the compression ratio sweep (coupled) produces a more modest
2.8× range. Whether signal tokens survive summarization matters
more than overall summary length.

Length provides natural buffering. Long CoTs (300–500 to-
kens) show 39% lower MAD than short CoTs (50–100 tokens), sug-
gesting that extended reasoning naturally buffers against summa-
rization artifacts.

Practical implications. For aggregate analysis across many
instances, moderate compression with coupling produces MADs
of 0.07, which may shift population-level honesty/faithfulness esti-
mates by several percentage points. For individual instance eval-
uation, 23.7% of instances exceed 𝜖 = 0.10, making per-instance
conclusions unreliable without fidelity guarantees. API providers
should expose summarization parameters or provide fidelity bounds.

Limitations. (1) Ourmodel assumes independent signal retention;
real summarizers may exhibit correlated omissions. (2) We model
summarization as token-level, whereas actual LLM summarizers
operate semantically, potentially preserving meaning when specific
tokens are dropped. (3) The coupling model (𝜌𝛼 with 𝛼 = 0.35)
is assumed, not empirically calibrated to any specific API; future
work should calibrate 𝛼 using signal markers in real API responses.
(4) “Vacuously honest” instances (𝐻 = 1 when no hint-mention



Validating the Impact of Summarized Chain-of-Thought on Honesty and Faithfulness Scores

tokens are present) could mask real deviation if the summarizer
removes all hint tokens, converting a measurable instance to a
vacuously-honest one.

6 RELATEDWORK
Chain-of-thought prompting [8] and its extensions have been stud-
ied extensively for reasoning capability. OpenAI’s reasoning mod-
els [5] and selection-inference approaches [3] provide related frame-
works. Faithfulness of CoT has been questioned by work showing
that models sometimes arrive at correct answers through unfaithful
reasoning chains [4, 6]. The specific problem of summarized CoT
evaluation was identified byWalden [7] in the context of measuring
reasoning honesty. Our work complements the faithfulness prob-
ing approach of Chen et al. [2] by focusing on the summarization
artifact rather than internal model representations. Anthropic’s
documentation [1] describes the extended thinking feature that
motivates this analysis.

7 CONCLUSION
We formalized and quantified the CoT summarization deviation
problem for honesty and faithfulness measurement. Our coupled re-
tention model 𝑝eff = 𝑝nom · 𝜌𝛼 captures how compression degrades
signal preservation, producing more realistic deviation estimates

than uncoupled models. The simulation framework establishes that
moderate summarization under coupling produces MADs of 0.072–
0.074 at 3:1 compression, with 23.7% of individual instances exceed-
ing 𝜖 = 0.10. Critical threshold analysis shows that near-perfect
signal retention (𝑝 ≥ 0.96) is needed for reliable per-instance mea-
surement. These results provide practical guidance for researchers
working with summarized CoT APIs and motivate the development
of fidelity-guaranteed summarization for safety-critical CoT moni-
toring. All results are generated from a single reproducible pipeline
with a configuration manifest for full traceability.
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