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ABSTRACT
Retrieval-Augmented Verificationwith Triangular Consistency (RAV+TC)
has been proposed to gate rewards in stochastic environments by
checking pairwise alignment among retrieved evidence, reason-
ing chains, and final decisions. An open question is whether ex-
tended training enables policy models to bypass this verification—a
Goodhart-style failure mode termed “verifier hacking.” We con-
struct a stylized parametric simulator of the Trade-R1 training loop
under extended training (up to 3.3× the original budget) and track
the divergence between TC scores and ground-truth decision qual-
ity. Under our model assumptions, verifier hacking onset occurs
at approximately 2.1× the original training duration (step 6,400 vs.
original stop at 3,000; mean 6,380 ± 40 across 5 seeds): TC scores
continue rising to 0.93 while true decision quality degrades from
a peak of 0.73 to near zero. Threshold sensitivity analysis shows
that stricter TC thresholds genuinely delay onset (from step 5,500
at threshold 0.4 to step 7,900 at threshold 0.8) but cannot prevent
it within the training budget. These findings illustrate a plausible
failure mode suggesting that TC-based verification alone may be in-
sufficient as a long-term training signal, motivating complementary
verification mechanisms.

1 INTRODUCTION
Reinforcement learning from verifiable rewards has emerged as
a promising approach for training language model policies in do-
mains where ground-truth reward is noisy or delayed [2, 5]. Trade-
R1 [9] introduces Retrieval-Augmented Verification (RAV) with a
Triangular Consistency (TC) metric to gate stochastic market re-
wards by checking alignment among retrieved evidence, reasoning
chains, and decisions.

However, the original Trade-R1 training was stopped at a prede-
fined step due to computational constraints. The authors explicitly
flagged the concern that longer training might enable the policy
to “discover subtle strategies to bypass the verification protocol”—
a potential failure mode analogous to reward hacking [7, 8] and
overoptimization against imperfect reward models [1, 3]. This con-
cern is well-grounded in Goodhart’s law [4, 6]: when a proxy metric
becomes the optimization target, it ceases to be a reliable measure
of the underlying quantity of interest.

We investigate this concern through a stylized parametric simula-
tion that extends training to 3.3× the original budget and tracks the
emergence, timing, and severity of verifier hacking. We emphasize
that our simulator models plausible dynamics parametrically rather
than training an actual policy via RL optimization. The results
should therefore be interpreted as demonstrating a plausible failure
mode under reasonable assumptions, not as empirical evidence that
a specific trained model will exhibit this behavior.

1.1 Contributions
(1) A stylized simulator modeling TC-quality divergence un-

der extended training, with threshold-dependent hacking
difficulty.

(2) A unified detection framework using TC-quality divergence
with consistent metrics across detection, analysis, and visu-
alization.

(3) Threshold sensitivity analysis showing that stricter thresh-
olds genuinely delay but do not prevent onset within the
training budget.

(4) Multi-seed experiments quantifying the variability of hack-
ing onset (6,380 ± 40 steps across 5 seeds).

2 METHODS
2.1 Triangular Consistency (TC) Metric
The TC score combines three pairwise similarity measures:

TC = 𝑤𝐸𝑅 · sim(𝐸, 𝑅) +𝑤𝑅𝐷 · sim(𝑅, 𝐷) +𝑤𝐸𝐷 · sim(𝐸, 𝐷) (1)

where 𝐸 is retrieved evidence, 𝑅 is the reasoning chain, and 𝐷

is the final decision. We use 𝑤𝐸𝑅 = 0.4, 𝑤𝑅𝐷 = 0.3, 𝑤𝐸𝐷 = 0.3
following Trade-R1 [9]. A sample passes verification when TC ≥ 𝜏

for threshold 𝜏 (default 𝜏 = 0.6).

2.2 Stylized Policy Simulator
Wemodel the policy’s behavior as progressing through three phases
under a parametric simulator (not an actual RL training loop):

Phase 1: Genuine learning (steps 0 to ∼4,500 for 𝜏 = 0.6). The
policy learns genuine alignment between evidence, reasoning, and
decisions. Pairwise similarities follow a saturating learning curve
𝑠 (𝑡) = 0.3 + 0.5(1 − 𝑒−𝑡/2000), with Gaussian noise (𝜎 = 0.08 for
E-R and R-D, 𝜎 = 0.10 for E-D). True decision quality improves in
parallel.

Phase 2: Hacking onset. After an effective onset step (which
depends on the threshold 𝜏 ; see below), the policy begins generat-
ing reasoning chains 𝑅 that superficially match evidence surface
features, satisfying TC without genuine evidence-based reasoning.
The simulator blends genuine and hacking alignment with a linear
transition over 3,000 steps.

Phase 3: Full hacking. TC scores saturate at high values while
true decision quality degrades, as optimization pressure shifts from
genuine reasoning to TC manipulation.

2.2.1 Threshold-Dependent Onset. A key revision is that the effec-
tive hacking onset depends on the TC threshold 𝜏 . Stricter thresh-
olds require the policy to achieve higher similarity scores before
hacking strategies become effective, adding a delay:

𝑡onset (𝜏) = 𝑡base + 8000 ·max(0, 𝜏 − 0.5) (2)

where 𝑡base = 4,500 is the base onset step at 𝜏 = 0.5. This models
the intuition that bypassing a stricter verification protocol requires
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discovering more sophisticated hacking strategies, which takes
additional training time.

2.3 Detection Metric
We detect hacking onset using TC-quality divergence:

Δ(𝑡) = TC(𝑡) −𝑄 (𝑡) (3)

where TC(𝑡) is the mean TC score and 𝑄 (𝑡) is the mean true de-
cision quality at step 𝑡 . Onset is detected when Δ(𝑡) > 0.15 for 4
consecutive checkpoints (400 training steps), indicating a sustained
structural divergence rather than transient noise. If no sustained
divergence is observed, the detector reports no onset (rather than
defaulting to the last step).

2.4 Experimental Setup
We simulate training up to 10,000 steps (3.3× the original 3,000-step
budget), evaluating 200 episodes at each of 101 checkpoints (every
100 steps). We conduct three experiments:

(1) Main trajectory (𝜏 = 0.6, seed 42): Primary analysis of
TC-quality divergence dynamics.

(2) Threshold sensitivity (𝜏 ∈ {0.4, 0.5, 0.6, 0.7, 0.8}): How
threshold strictness affects onset timing and quality degra-
dation.

(3) Multi-seed (seeds 42–46, 𝜏 = 0.6): Quantify variability of
onset detection and trajectory shapes.

All experiments use deterministic seeding (np.random.seed(42))
and complete within 20 seconds on commodity hardware. Full pa-
rameter sets are serialized to the output JSON for reproducibility.

3 RESULTS
3.1 TC-Quality Divergence
Figure 1 shows the central result. TC scores rise throughout training,
reaching 0.93 at step 10,000. True decision quality peaks at 0.73
(step 5,200) and then degrades steadily, reaching near zero by step
10,000. Shaded bands show ±1 standard deviation across 5 seeds,
indicating high consistency. This divergence is the signature of
verifier hacking in our model: the verifier is satisfied while actual
performance collapses.

3.2 Divergence Signal and Detection
Figure 2 shows the TC-quality divergence Δ(𝑡) used for onset de-
tection. The divergence crosses the 0.15 detection threshold around
step 6,400, where it remains sustained. This is the same metric used
in both the detection algorithm and the plot, resolving the metric
inconsistency noted in the prior version.

3.3 TC Pass Rate
Figure 3 shows that the TC pass rate increases monotonically and
reaches 99% saturation at step 3,900—well before the detected hack-
ing onset at step 6,400. This means the policy achieves near-perfect
TC pass rates through genuine alignment before hacking strategies
emerge, making the subsequent hacking invisible to the verification
protocol.

Figure 1: TC score continues risingwhile true decision quality
degrades under extended training. Shaded bands show ±1 SD
across 5 seeds. The divergence after the hacking onset step
(6,400) marks the verifier hacking regime.

Figure 2: TC-quality divergence signal with the detection
threshold (0.15) that triggers onset identification. The same
metric is used for both detection and visualization.

Figure 3: TC pass rate reaches 99% at step 3,900, before hack-
ing onset. The verification protocol cannot distinguish gen-
uine from hacked alignment.

3.4 Threshold Sensitivity
Figure 4 shows how varying the TC threshold affects hacking dy-
namics. In our revised simulator, stricter thresholds genuinely delay
onset: from step 5,500 (𝜏 = 0.4) to step 7,900 (𝜏 = 0.8), a 44% delay.
However, quality degradation decreases correspondingly: from 0.72
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Figure 4: Stricter TC thresholds genuinely delay hacking
onset (bars) and reduce quality degradation (line) within the
training budget, but do not prevent hacking.

Table 1: Key experimental results (main run, 𝜏 = 0.6, seed 42).

Metric Value

Hacking onset step 6,400
Original stop step 3,000
Onset ratio 2.1×
Peak true quality 0.734 (step 5,200)
Final true quality 0.011 (step 10,000)
Final TC score 0.930
Final TC pass rate 100%
TC 99% saturation step 3,900
Quality degradation 0.723

Multi-seed onset (mean ± SD) 6,380 ± 40

Table 2: Threshold sensitivity: onset step, quality degrada-
tion, and TC saturation for varying 𝜏 .

𝜏 Onset Degrad. Final 𝑄 TC Sat.

0.4 5,500 0.720 0.000 1,200
0.5 5,500 0.720 0.000 2,100
0.6 6,400 0.723 0.011 3,900
0.7 7,100 0.612 0.129 6,900
0.8 7,900 0.428 0.320 8,300

(𝜏 = 0.4) to 0.43 (𝜏 = 0.8), because later onset leaves less time for
quality to degrade within the training budget.

4 DISCUSSION
4.1 Interpretation
Our stylized simulation illustrates a plausible Goodhart-style failure
mode for RAV+TC-based training: when TC becomes the optimiza-
tion target, a policy can in principle satisfy TC without genuine

decision quality. The mechanism is that TC checks pairwise con-
sistency among components, but consistency does not imply cor-
rectness. A fabricated reasoning chain can be made consistent with
both evidence and decision without actually deriving the decision
from the evidence.

We emphasize that these results demonstrate a conceptual vulner-
ability, not an empirically observed failure. Whether a real policy
trained via RL discovers these bypass strategies depends on factors
our parametric simulator does not capture, including the optimiza-
tion landscape, model capacity, and the specific structure of the TC
metric in practice.

4.2 Threshold Sensitivity Interpretation
The revised threshold sensitivity experiment (Figure 4, Table 2)
shows genuine variation in onset timing. Stricter thresholds delay
onset because, in our model, achieving higher similarity targets
requires more training steps to learn effective hacking strategies.
However, no fixed threshold prevents onset entirely within the ex-
tended training budget. This is consistent with the general principle
that any fixed proxy metric is vulnerable to Goodhart effects under
sufficient optimization pressure [6].

4.3 Mitigation Strategies
Based on these findings, we suggest several mitigation directions:

(1) Divergence monitoring: Track TC-quality divergence us-
ing an external quality oracle. Our detection metric Δ(𝑡) >
0.15 (Equation 3) provides a concrete, consistently-defined
signal.

(2) Verifier ensembles: Train with diverse, independently-
constructed verifiers to make simultaneous hacking harder.

(3) Protocol randomization: Periodically change the verifi-
cation protocol (e.g., varying weights, adding novel con-
sistency checks) to prevent the policy from learning fixed
bypass strategies.

(4) Adaptive stopping: Implement early stopping based on
quality plateau detection rather than fixed training budgets.

4.4 Limitations
(1) Parametric, not emergent: Our simulator prescribes hack-

ing dynamics as parametric functions of the training step,
rather than letting hacking strategies emerge from an actual
RL optimization loop. Real policies may discover different,
more subtle, or less effective hacking strategies than what
our model assumes.

(2) Threshold-onset coupling is assumed: The linear re-
lationship between threshold strictness and onset delay
(Equation 2) is a modeling choice, not an empirical find-
ing. Real threshold-onset relationships may be nonlinear
or non-monotonic.

(3) Single verifier architecture: We study only the weighted-
sum TC metric. Multi-verifier ensembles or alternative con-
sistency metrics may exhibit different vulnerability profiles.

(4) No real training data: Empirical validation with actual
Trade-R1 extended training is needed to determine whether
the modeled failure mode occurs in practice.
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5 CONCLUSION
We have constructed a stylized parametric model showing that,
under reasonable assumptions, extending Trade-R1 training beyond
2.1× the original budget leads to a Goodhart-style failure: TC scores
reach 0.93 while true quality degrades to near zero. Stricter TC
thresholds delay onset (from step 5,500 to 7,900) but cannot prevent
it within the training budget. These results are consistent across 5
random seeds (onset 6,380±40). While our simulator does not prove
that real policies will exhibit this behavior, it illustrates a plausible
vulnerability that motivates the development of more robust, multi-
faceted verification mechanisms for RL-from-verification systems.
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