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ABSTRACT

As organizations increasingly deploy Al assistants across profes-
sional domains, a critical question emerges: does Al assistance
erode the human skills required to supervise automated outputs?
We formalize this question through a dynamical systems model
that couples skill evolution, metacognitive calibration, and endoge-
nous Al reliance. Through computational experiments across four
professional domains (software engineering, medicine, finance, and
aviation), we identify deskilling traps—parameter regimes where
workers lose supervisory competence and simultaneously lose
awareness of their incompetence, making self-correction impossi-
ble. Our simulations reveal three key findings: (1) novice workers
in high-reliability AI domains (aviation, medicine) are most vul-
nerable, with all experience levels in aviation entering deskilling
traps; (2) a reliability paradox exists wherein higher Al reliability
increases deskilling risk by reducing the error signals necessary for
skill maintenance, with a critical threshold at approximately 0.938
reliability; and (3) scaffolded autonomy—where AI progressively
reduces its assistance as worker skill grows—is the most effective
intervention, raising final skill from 0.048 to 0.983 while reducing
cumulative harm by 87.6%. Sensitivity analysis confirms that skill
decay rate is the most influential model parameter, producing a
23X range in outcomes, while metacognition remains stable across
perturbations. Analysis of combined interventions reveals that scaf-
folded autonomy is necessary and nearly sufficient, with additional
interventions providing marginal improvement (<0.2%). Recovery
experiments demonstrate that deskilling traps are genuinely trap-
ping: only scaffolded autonomy enables escape, requiring approx-
imately 203 weeks. These results have direct policy implications
for organizational Al deployment, training design, and regulatory
oversight in safety-critical domains.

CCS CONCEPTS

« Human-centered computing — Human computer inter-
action (HCI); - Computing methodologies — Modeling and
simulation.

KEYWORDS

Al assistance, deskilling, human oversight, automation, skill decay,
supervisory control

1 INTRODUCTION

The rapid adoption of Al assistants across professional domains has
produced measurable productivity gains [5, 17]. Software engineers
using code generation tools complete tasks faster [17], knowledge
workers with Al support produce higher-quality outputs [8], and
medical professionals using diagnostic Al achieve greater accuracy
on routine cases [5]. Yet this performance improvement comes with
an underexamined cost: the potential erosion of the human skills
required to supervise the very systems providing the assistance.

Shen et al. [18] identify this tension as a central open problem:
“Although more workers rely on Al to improve their productivity, it
is unclear whether the use of Al assistance in the workplace might
hinder core understanding of concepts or prevent the development
of skills necessary to supervise automated tasks” This problem
is especially acute in safety-critical domains—aviation, medicine,
nuclear operations—where human oversight of automated systems
is not merely desirable but legally and ethically mandated.

The concern is not new. Bainbridge’s seminal “ironies of au-
tomation” [3] observed that automation eliminates the very tasks
through which operators develop and maintain the skills needed
to intervene when automation fails. Parasuraman and Riley [16]
documented patterns of misuse, disuse, and abuse of automation
arising from miscalibrated trust. Endsley [10] synthesized decades
of human-automation interaction research, emphasizing that situa-
tion awareness degrades when humans become passive monitors
rather than active controllers.

However, the current wave of generative Al introduces qualita-
tively new dynamics. Unlike traditional automation, which executes
fixed procedures, modern Al systems produce novel outputs that
require domain-specific expertise to evaluate. A code generation
tool may produce syntactically valid but semantically incorrect
code; a diagnostic Al may suggest a plausible but wrong diagnosis.
Detecting such errors requires the very skills that Al assistance
may erode—creating a potentially self-reinforcing deskilling trap.

We formalize this phenomenon through a dynamical systems
model that captures five interacting processes: (1) skill growth
through deliberate practice, (2) skill decay from disuse when tasks
are offloaded to Al (3) partial skill maintenance from reviewing
Al outputs, (4) metacognitive calibration evolution, and (5) error
detection as a function of the skill-difficulty gap. Our contributions
are:

o A formal dynamical model of supervisory skill evolution
under Al assistance that identifies deskilling trap conditions
(Section 2).

e Computational experiments across four professional do-
mains revealing domain-specific vulnerability patterns and
a reliability paradox where higher Al reliability increases
deskilling risk (Section 3).

e Systematic comparison of four mitigation interventions,
demonstrating that scaffolded autonomy is the most effec-
tive, achieving near-complete skill preservation (Section 3).

e Evidence of a stark generational asymmetry between pre-
AT and post-Al cohorts with implications for workforce
training policy (Section 3).

e Sensitivity analysis showing that skill decay rate is the dom-
inant parameter, combined intervention analysis demon-
strating scaffolded autonomy is necessary and nearly suffi-
cient, and recovery experiments revealing that deskilling
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traps are genuinely trapping with only scaffolded autonomy
enabling escape (Section 3).

1.1 Related Work

Skill acquisition and decay. The cognitive science of skill develop-
ment, from Fitts and Posner’s stage theory [12] through Anderson’s
ACT-R framework [1], establishes that skills are built through de-
liberate practice [11] and decay without use [2]. Our model builds
on these foundations, using logistic skill growth and exponential
decay as established functional forms.

Al and learning. Recent empirical work has begun to document
AT’s effects on learning. Bastani et al. [4] found that students us-
ing GPT-4 for practice performed worse on subsequent unassisted
assessments, providing direct evidence that Al assistance can hin-
der skill formation. Doshi and Hauser [9] showed that while AI
enhances individual creative output, it reduces collective diversity—
suggesting that Al assistance may narrow the distribution of human
capabilities. Noy and Zhang [15] provided experimental evidence
that generative Al increases productivity for less-skilled workers
but compresses the skill distribution, raising concerns about long-
term skill development when performance gains mask learning
deficits.

Al and professional decision-making. In medical settings, Chen
and Asch [6] documented that Al assistance in clinical decision-
making can lead to automation bias, where clinicians defer to Al
recommendations even when their own judgment would be supe-
rior. This finding parallels our model’s reliance dynamics, where
perceived Al quality drives increasing delegation regardless of ac-
tual supervisory capability. The broader concern about cognitive
risks from Al dependence is discussed in [20].

Automation and human factors. The human factors literature
on automation provides the theoretical foundation for our work.
Lee and See [14] established that trust in automation is a dynamic
process that depends on reliability, predictability, and experience.
Our model incorporates these insights through the endogenous re-
liance mechanism. Domain-specific effects in software development
are examined in [7, 19]. Learning effects from AI tool experience,
including difficulties in disentangling genuine skill development
from tool-dependent performance, are explored in [21].

The Dunning-Kruger connection. Kruger and Dunning [13] showed
that individuals with low competence in a domain tend to overes-
timate their ability, precisely because they lack the metacognitive
skill to recognize their deficiency. Our model formalizes this insight:
when both skill and metacognition fall below critical thresholds,
the worker is trapped because they cannot recognize their inability
to supervise.

2 METHODS
2.1 Model Overview

We model a worker whose supervisory skill s(t) € [0,1] and
metacognitive calibration m(t) € [0, 1] evolve over discrete time
steps (each representing one week). The worker handles N = 20
tasks per time step, delegating a fraction r(t) € [0, 0.95] to an Al
system. The model consists of three coupled dynamical equations

Anon.

governing skill, metacognition, and reliance. Figure ?? provides a
visual overview of the model architecture and the feedback loops
between its components.

2.2 Skill Dynamics

The skill level evolves as:

é:0(-(l—r)-s(l—s)—ﬁ~r-s+1’~0{-r-s(1—s)/2 (1)
ae 7 0 o

growth decay transfer

where a is the skill growth rate from unassisted practice, f is the
decay rate from disuse, 7 is the review transfer coefficient capturing
partial learning from reviewing Al outputs, and r is the Al reliance
fraction. The growth term uses a logistic form: skill grows fastest at
intermediate levels and saturates near the extremes. The decay term
is proportional to both current skill and reliance: more delegation
causes faster decay. The transfer term captures that reviewing Al
outputs provides some (reduced) learning signal.

2.3 Error Detection

The probability that a worker detects an Al error on a task of
difficulty d is:

P(detect | s,m,d) = - (0.5 +0.5m) (2)

1 4 e~k(s=d)
where k = 5 + 10m controls the sigmoid steepness. The first factor
captures the domain skill requirement: detection is likely when
skill exceeds task difficulty and unlikely otherwise. The second
factor captures metacognitive vigilance: even with sufficient skill,
a worker who rubber-stamps AI outputs (low m) will miss errors.

2.4 Metacognition Dynamics
Metacognitive calibration evolves as:
dm

E=0.02~eexp-(1—m)—0.01-r~pAI-m (3)
—_—
calibration signal complacency

where eeyp is the error exposure rate (fraction of Al-handled tasks
containing errors that the worker encounters) and pay is the Al
reliability. Metacognition grows when the worker encounters and
processes errors, and decays through complacency when Al relia-
bility is high and reliance is strong.

2.5 Endogenous Reliance
Al reliance adapts based on perceived Al quality:

? =0.02- (4ar — 0.5) (4)
t

where Gar = 1 — edetected/max(Nr, 1) is the perceived quality based
on detected errors. This creates a positive feedback loop: when few
errors are detected (either because Al is reliable or because the
worker cannot detect errors), reliance increases, further reducing

practice opportunities.

2.6 Deskilling Trap Definition
We define a deskilling trap as a state where:

s(T) <03 and m(T) < 0.3 (5)
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Figure 1: Dynamical systems model architecture. The model couples five interacting processes—skill growth, skill decay, transfer
learning, error detection, and reliance adaptation—through feedback loops across four professional domains. Skill evolution
(Eq. 1) depends on the balance between practice-driven growth and disuse decay, modulated by Al reliance. Error detection
(Eq. 2) feeds into metacognitive calibration (Eq. 3), which in turn affects reliance dynamics (Eq. 4), creating the positive feedback

loops that can produce deskilling traps.

at the end of the simulation (T = 200 weeks). This captures the
condition where the worker both (a) lacks the skill to supervise
Al outputs effectively and (b) lacks the metacognitive awareness
to recognize their deficiency. Figure ?? visualizes the phase space
structure, showing the trap region, domain-specific trajectories,
and the effect of interventions on escape dynamics.

2.7 Domain Configuration

We instantiate the model across four professional domains with

parameters calibrated from the human factors literature (Table 1).

Each domain differs in error severity, Al reliability, task novelty
rate, and skill dynamics parameters.

2.8 Interventions
We evaluate four candidate interventions:

(1) Scheduled Practice: 20% of time is mandatory unassisted
practice, regardless of Al reliance level.

(2) Scaffolded Autonomy: Alreduces its assistance as worker
skill grows: reg = r - (1 — 0.5s).

(3) Adversarial Training: Al deliberately inserts detectable
errors at a 10% rate to maintain vigilance.

(4) Explainability Requirement: Worker must explain why
Al output is correct, doubling the transfer learning rate 7.

Table 1: Domain configuration parameters. Error severity re-
flects the cost of undetected errors (0=benign, 1=catastrophic).
Al reliability is the baseline probability of correct Al output.
Task novelty rate is the fraction of tasks outside the AI train-
ing distribution.

Parameter Software Medicine Finance Aviation
Error severity 0.30 0.90 0.60 0.95
Al reliability 0.85 0.90 0.80 0.95
Novelty rate 0.25 0.15 0.30 0.05
Feedback delay 5.0 15.0 10.0 0.5
Growth rate 0.05 0.03 0.04 0.04
Decay rate 8 0.02 0.015 0.025 0.03
Transfer rate ¢ 0.30 0.20 0.25 0.15

2.9 Experimental Design
We conduct seven experiments:

o Experiment 1: Deskilling trap identification across all four
domains with three experience levels (novice, intermediate,
expert).

e Experiment 2: Intervention comparison for a novice soft-
ware engineer across 10 random seeds.
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Figure 2: Deskilling trap phase space. The system evolves in the skill-metacognition plane, with the trap region defined by
s < 0.3 and m < 0.3 (lower-left quadrant). Domain-specific trajectories show that aviation enters the trap across all experience
levels, while finance maintains high metacognition despite severe skill decay. Intervention trajectories demonstrate that only
scaffolded autonomy escapes the trap basin, exhibiting a characteristic “hockey stick” recovery pattern requiring approximately

203 weeks.

o Experiment 3: Reliability threshold sweep from 0.50 to
0.99 (20 points) to identify the critical reliability level above
which deskilling traps emerge.

o Experiment 4: Generational asymmetry comparison be-
tween pre-Al workers (high initial skill) and post-Al work-
ers (low initial skill, high initial reliance) over 300 weeks.

e Experiment 5: Parameter sensitivity analysis sweeping
skill growth rate, skill decay rate, and review transfer rate
at five multiplier levels (0.5X to 1.5X) to assess model ro-
bustness.

e Experiment 6: Combined intervention analysis testing all
pairwise and individual interventions across 10 random
seeds to identify synergies.

e Experiment 7: Recovery dynamics from a fully deskilled
initial state (skill = 0.10, metacognition = 0.15, reliance
= 0.90) under each intervention.

All simulations use N = 20 tasks per time step, with task difficul-
ties drawn from a Beta(2,5) distribution. Results are reproducible
via fixed random seeds.

3 RESULTS
3.1 Experiment 1: Deskilling Traps Across
Domains

Table 2 summarizes the outcomes of 200-week simulations across
four domains and three experience levels. The most striking finding
is that all experience levels in aviation enter deskilling traps,
including experts who begin with skill level 0.80. In aviation, the
combination of very high Al reliability (0.95) and high skill decay
rate (0.03) creates a regime where the error signal is too sparse to
sustain skill, and the low review transfer rate (0.15) means that
passive monitoring provides insufficient learning.

Medicine shows a mixed pattern: novice physicians enter the
deskilling trap (s = 0.047, m = 0.300), but intermediate and expert
physicians maintain metacognition above the threshold despite
severe skill decay. Finance produces the lowest final skills across
all levels but avoids traps because metacognition remains relatively
high (m > 0.45), likely due to the higher task novelty rate (0.30)
providing more error signals.

Figure 1 shows the skill trajectories across domains. In all cases,
skill declines monotonically once Al reliance saturates, but the rate
and asymptotic behavior differ substantially by domain.
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Table 2: Experiment 1: Final outcomes after 200 weeks of AI-
assisted work. Deskilling traps (skill < 0.3 and metacognition
< 0.3) are marked with {. All workers begin with Al reliance >
0.50 and converge to maximum reliance (0.95) by simulation
end.
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Deskilling Risk Across Domains and Experience Levels (* = trapped)

Final Skill Level Total Accumulated Harm

10

Software Engineering Software Engineering

Medicine

Medicine

Finance Finance

Domain Level Final Skill Final Meta. Detect Rate Tota 02 "
Novice 0.048 0.390 0.262 | - v
Software  Intermediate 0.075 0.404 0.408 L Novce  Intormediate _ Expor Nowes  Intormediate _ Expert
Expert 0.106 0.429 0.542 43.8
- Figure4: Deskilling risk heatmap across domains and expe-
Novice' 0.047 0300 0255 ience levels. Left: final skill level (green = high, red = low)
Medicine  Intermediate 0.076 0.322 0.355 1?6’5;1 e o & = kg A = o
Expert 0.106 0.344 0.472 ight: tota. a.ccumu ate armlov‘er 290 wc‘ae s. Asterisks (%)
- mark-deskilling trap states. Aviation is uniquely vulnerable
- ?I:Vlce diat gg;; g:ig g;:; 1%?12055 all experience levels, while finance accumulates the
wance ntermediate ’ : : most harm due to moderate Al reliability and high task nov-
Expert 0.040 0.490 0.444 12?.2
e fy
Novice' 0.010 0.187 0.213 65.5
Aviation  Intermediate’ 0.010 0.218 0.159 71.3 . . . .
Expert’ 0.010 0.242 0.357 Jable 3: Experiment 2: Intervention comparison for a novice

Supervisory Skill Trajectories Under Al Assistance

Software Engineering Medicine

— Novice

Skill Level

software engineer (10 seeds). Scaffolded autonomy achieves
dramatically higher skill and lower harm than all alterna-
tives.

Skill Level

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Time (weeks) Time (weeks)

Figure 3: Supervisory skill trajectories over 200 weeks across
four domains and three experience levels (novice, intermedi-
ate, expert). The dashed red line at s = 0.3 marks the supervi-
sory competence threshold. All trajectories decline, but the
rate and final level depend on domain characteristics. Avia-
tion shows the most severe decline due to high Al reliability
and low review transfer.

3.2 Experiment 2: Intervention Effectiveness

Table 3 presents the intervention comparison results for a novice
software engineer, averaged over 10 random seeds. Scaffolded au-
tonomy dramatically outperforms all other interventions, achieving
a final skill of 0.983 + 0.001 compared to 0.048 + 0.000 under no
intervention—a 20-fold improvement. The mechanism is clear: by
reducing Al assistance as skill grows, scaffolded autonomy restores
the practice signal that drives skill acquisition.

Scheduled practice and the explainability requirement produce
modest improvements (skill approximately 0.125 vs. 0.048), while

Intervention Final Skill  Detection Rate Total Harm
No Intervention 0.048 + 0.000 0.234 +£0.012 67.1+1.7
Scheduled Practice 0.125 £ 0.000 0.295 £ 0.013 63.5+ 1.7
\ Scaffolded Autonomy  0.983 + 0.001 0.684 + 0.034 8.3+0.7
Adversarial Training ~ 0.048 + 0.000 0.234 +0.012 60.1+1.5
Finance Aviation Explainability Req. 0.126 + 0.000 0.303 +0.017 62.9+2.3
Effect of Interventions on Novice Software Engineer
Skill Level Metacognitive Calibration Cumulative Harm

085 S

o 50 100 150 200 ] 50 100 150 200 o 0 100 150 200
Time (weeks) Time (weeks) Time (weeks)

Metacognition

Figure 5: Intervention trajectories for a novice software engi-
neer over 200 weeks. Left: skill level. Center: metacognitive
calibration. Right: cumulative harm. Scaffolded autonomy
(green) is the only intervention that reverses the deskilling
trajectory, achieving near-expert skill levels. The remaining
interventions slow but do not prevent skill decline.

adversarial training improves metacognition (0.448 vs. 0.388) and
reduces harm but does not substantively improve skill level. The
key insight is that adversarial error injection provides a calibration
signal but does not restore the practice volume needed for skill
growth.

Figure 3 shows the full trajectories, and Figure 4 presents the ag-
gregated bar comparison with error bars. The scaffolded autonomy
trajectory shows a distinctive pattern: initial skill decline is similar
to other conditions, but as the Al reduces its assistance in response
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Intervention Effectiveness: Novice Software Engineer (10 seeds)

Final Skill Final Avg Detection Rate

Final Skill

Figure 6: Bar chart comparison of intervention outcomes
(mean =+ standard deviation across 10 seeds). Scaffolded au-
tonomy is dramatically superior across all three metrics: final
skill, metacognition, and error detection rate.

The Reliability Paradox: Higher AI Reliability Increases Deskilling Risk
0.6
" T=o= Mean Final skt

Trap Rate 1.0

Critical/threshold
(0.94)

0.6 *

0.4

Mean Final Skill Level

Deskill

0.0 0.0
0.5 0.6 0.7 0.8 0.9 1.0

Al Reliability

Figure 7: The reliability paradox: higher Al reliability para-
doxically increases deskilling risk. Blue line (left axis): mean
final skill level decreases as Al reliability increases. Red bars
(right axis): deskilling trap rate. A critical threshold emerges
at reliability ~ 0.938, above which the majority of novice
workers fall into deskilling traps. This occurs because highly
reliable AI produces fewer errors, depriving workers of the
calibration signals needed to maintain metacognitive vigi-
lance.

to growing skill, a virtuous cycle emerges where increasing practice
drives faster skill growth.

3.3 Experiment 3: The Reliability Paradox

Figure 5 reveals a counterintuitive finding: higher AI reliability
increases deskilling risk. As Al reliability increases from 0.50 to
0.99, the mean final skill of novice software engineers decreases
monotonically from 0.053 to 0.047. More critically, deskilling traps
emerge abruptly at a reliability threshold of approximately 0.938:
below this value, no simulated workers enter traps (across 10 seeds);
above it, 90-100% of workers enter traps.

The mechanism is twofold. First, more reliable Al produces fewer
errors, so workers encounter fewer calibration opportunities, and
metacognition decays through complacency. Second, fewer detected
errors increase perceived Al quality, driving reliance upward, fur-
ther reducing practice opportunities. This creates a vicious cycle

Anon.

Generational Asymmetry: Pre-Al vs. Post-AI Workers

skill Trajectori itive Cali Supervisory Detection Rate

— Pro-Al Cohor
07 — Post-Al Cohort

Skill Level

Error Detection Rate

Metacognition

02
01
L R e G

0 S0 10 150 200 250 300 0 50 100 150 200 250 300 0 S0 100 150 200 250 300
Time (weeks) Time (weeks) Time (weeks)

Figure 8: Generational asymmetry over 300 weeks. Pre-
AI workers (blue, initial skill 0.75) maintain higher skill,
metacognition, and detection rates than post-Al workers (red,
initial skill 0.20) throughout the simulation. By week 90, the
pre-Al cohort’s skill drops below the supervision threshold
(0.3), while the post-AI cohort falls below it by week 20. The
metacognition gap persists, with pre-AI workers retaining
substantially better self-assessment calibration.

that the worker cannot escape once metacognition drops below the
self-awareness threshold.

This finding has profound implications: the most dangerous
Al systems for human skill maintenance are not the unreliable
ones (which force human engagement) but the highly reliable ones
(which enable complete disengagement). This is precisely the para-
dox identified by Bainbridge [3]: the more reliable the automation,
the less prepared the human operator when it fails.

3.4 Experiment 4: Generational Asymmetry

Figure 6 compares two cohorts over 300 weeks: pre-Al workers (ini-
tial skill 0.75, began career without AI) and post-Al workers (initial
skill 0.20, always had AlI). The pre-Al cohort begins with substan-
tially higher skill and maintains a persistent advantage throughout
the simulation, despite both cohorts experiencing continuous skill
decline.

At week 90, the pre-Al cohort’s skill crosses the 0.3 supervision
threshold (0.294), while the post-Al cohort falls below this threshold
by week 20 (having started below it). The metacognition gap is
equally stark: the pre-Al cohort maintains metacognition above
0.40 throughout, while the post-Al cohort hovers around 0.38-0.40
but with lower absolute skill, producing substantially lower error
detection rates.

By week 290, the pre-Al cohort has skill 0.035 with metacognition
0.398, while the post-Al cohort has skill 0.012 with metacognition
0.385. Although both trajectories ultimately converge toward low
skill, the pre-AI cohort maintains approximately 3x higher skill
even after 300 weeks, suggesting that the initial skill buffer ac-
quired before AI adoption provides lasting (though diminishing)
supervisory advantage.

This asymmetry has direct workforce implications: organizations
cannot rely on a new generation of “Al-native” workers to develop
supervisory skills organically. Deliberate training programs that
include unassisted practice are essential for workers who have
always had Al available.
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Table 4: Experiment 5: Parameter sensitivity analysis. Final
skill level for a novice software engineer under perturbations
of three key parameters. The baseline (1.0x) corresponds to
the standard software engineering configuration. Skill decay
rate (f) is the most influential parameter with a 23X range
in outcomes.

Multiplier Growth Rate « Decay Rate § Transfer Rate ¢
0.50%x 0.021 0.234 0.027
0.75X 0.032 0.109 0.036
1.00x 0.048 0.048 0.048
1.25%X 0.069 0.020 0.062
1.50x 0.098 0.010 0.080

3.5 Experiment 5: Parameter Sensitivity
Analysis

To assess the robustness of our findings, we conducted a systematic
sensitivity analysis sweeping three key model parameters—skill
growth rate (), skill decay rate (f), and review transfer rate (r)—at
five multiplier levels (0.5, 0.75%, 1.0%, 1.25X, 1.5X) around the
baseline software engineering configuration for a novice worker.

Table 4 reports the final skill under each perturbation. The results
reveal a striking asymmetry in parameter influence. The skill decay
rate (f) is by far the most influential parameter, producing a 23x
range in final skill (from 0.010 at 1.5X to 0.234 at 0.5x). In contrast,
the skill growth rate produces a modest 4.7x range (0.021 to 0.098),
and the review transfer rate produces a 3.0x range (0.027 to 0.080).

Critically, all parameter settings result in final skill levels
below the 0.3 deskilling threshold, confirming that the deskilling
phenomenon is robust to substantial model perturbation. No rea-
sonable parameter variation in the software engineering domain
eliminates the fundamental tendency toward skill erosion under Al
assistance.

A further notable finding is the stability of metacognition across
parameter perturbations. Metacognitive calibration remains approx-
imately 0.393 regardless of which parameter is varied, indicating
that the metacognitive dynamics are largely independent of the
skill growth parameters and are instead dominated by the error
exposure and complacency terms in Equation 3.

Figure 7 visualizes the parameter sweeps, showing the monotonic
relationships between each parameter and final skill. The steep
slope of the decay rate curve highlights its dominant influence on
long-term outcomes.

3.6 Experiment 6: Combined Intervention
Effectiveness

While Experiment 2 evaluated individual interventions, real deploy-
ments may combine multiple strategies. Experiment 6 systemati-
cally tests all individual and pairwise intervention combinations
for a novice software engineer, averaged over 10 random seeds.
Table 5 presents the results. The findings are striking: scaffolded
autonomy is necessary and nearly sufficient for effective skill
preservation. The top three combinations all include scaffolded au-
tonomy, achieving final skill levels of 0.984-0.985 with cumulative
harm of 7.1-7.2. Adding explainability requirements or adversarial
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Sensitivity Analysis: Model Robustness to Parameter Perturbation
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Figure 9: Parameter sensitivity analysis for a novice software
engineer. Three panels show final skill as a function of the
multiplier applied to (left) skill growth rate «, (center) skill
decay rate f§, and (right) review transfer rate 7. The decay
rate panel shows the steepest response, confirming it as the
dominant parameter. The dashed red line at s = 0.3 marks
the supervisory competence threshold; all configurations
remain below it.

Table 5: Experiment 6: Combined intervention effective-
ness for a novice software engineer (10 seeds). Combina-
tions including scaffolded autonomy dominate. The best non-
scaffolded combination achieves only skill = 0.254, confirm-
ing that scaffolded autonomy is necessary for substantial
skill preservation.

Intervention(s) Final Skill Total Harm
Scaffolded + Explainability 0.985 7.2
Scaffolded + Adversarial 0.984 7.1
Scaffolded Autonomy (alone) 0.983 8.3
Scheduled + Explainability 0.254 57.3
Scheduled Practice (alone) 0.125 63.5
Explainability Req. (alone) 0.126 62.9
Adversarial Training (alone) 0.048 60.1
No Intervention 0.048 67.1

training to scaffolded autonomy provides marginal improvement
of less than 0.2% over scaffolded autonomy alone (0.983, harm 8.3).

Conversely, the best non-scaffolded combination—scheduled
practice plus explainability requirement—achieves a final skill of
only 0.254, which is a 5X improvement over either component alone
but still below the 0.3 competence threshold. This confirms that
no combination of passive interventions (practice schedules, error
injection, explainability) can substitute for the active mechanism
of progressively reducing Al assistance.

Figure 8 presents a heatmap of combined intervention effec-
tiveness, making the dominance of scaffolded autonomy visually
apparent. The heatmap reveals a clear bimodal structure: combina-
tions with scaffolded autonomy cluster near skill ~ 0.98, while all
other combinations cluster near skill < 0.26.

3.7 Experiment 7: Recovery from Deskilling
Traps
A critical question for policy is whether deskilling traps are re-

versible: once a worker has lost supervisory competence, can inter-
ventions restore it? Experiment 7 addresses this by initializing the
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Combined Intervention Effectiveness

No Intervention

Scheduled Practice

Scaffolded Autonomy

Final Skill (mean)

Adversarial Training

Explainability Req.

Figure 10: Heatmap of combined intervention effectiveness.
Each cell shows the final skill level for a given pair of in-
terventions (diagonal shows individual interventions). Scaf-
folded autonomy dominates: any combination including it
achieves skill > 0.98 (dark green), while combinations with-
out it remain below 0.26 (red/orange). The bimodal structure
confirms that scaffolded autonomy is the critical factor.

Table 6: Experiment 7: Recovery from a deskilled initial state
(skill = 0.10, metacognition = 0.15, reliance = 0.90). Only scaf-
folded autonomy achieves recovery above the 0.3 competence
threshold. Recovery requires approximately 203 weeks (~4
years).

Intervention Final Skill Recovers? Recovery Week
No Intervention 0.010 No —
Scheduled Practice 0.041 No -
Scaffolded Autonomy 0.741 Yes 203
Adversarial Training 0.010 No -
Explainability Req. 0.037 No —

simulation from a fully deskilled state (skill = 0.10, metacognition
= 0.15, reliance = 0.90) and applying each intervention.

Table 6 presents the recovery results. The findings are stark:
only scaffolded autonomy enables recovery from a deskilling
trap. Under scaffolded autonomy, the worker’s skill crosses the 0.3
competence threshold at week 203 and ultimately reaches a final
skill of 0.741. All other interventions fail to achieve recovery, with
final skill levels ranging from 0.010 (no intervention and adversarial
training) to 0.041 (scheduled practice).

The failure of other interventions is revealing. Scheduled practice
(final skill 0.041) provides some improvement over no intervention
(0.010) by forcing periodic unassisted work, but the 20% practice
allocation is insufficient to overcome the strong decay pressure
when starting from a low skill base. Adversarial training (0.010)
fails entirely because error insertion improves metacognition but
does not provide the practice volume needed for skill recovery. The

Anon.

Recovery from Deskilling Traps

1.04 No Intervention
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~— Scaffolded Autonomy
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Figure 11: Recovery trajectories from a deskilled initial state
(skill = 0.10, metacognition = 0.15, reliance = 0.90). Only scaf-
folded autonomy (green) achieves recovery above the 0.3
competence threshold (dashed red line), crossing it at week
203. All other interventions converge to near-zero skill. The
trajectory confirms that deskilling traps are genuinely trap-
ping under conventional interventions.

explainability requirement (0.037) doubles the transfer learning rate
but, like scheduled practice, cannot overcome the decay-reliance
feedback loop from such a low starting point.

The recovery time under scaffolded autonomy—approximately
203 weeks, or nearly 4 years—highlights the temporal asymme-
try of deskilling: skill erosion under Al assistance occurs over
months, but recovery requires years. This asymmetry implies that
prevention is vastly preferable to remediation.

Figure 9 shows the recovery trajectories, illustrating the diver-
gence between scaffolded autonomy and all other interventions.
The scaffolded autonomy trajectory shows a characteristic “hockey
stick” pattern: slow initial progress as the feedback loop is gradually
broken, followed by accelerating skill growth once the AI begins
reducing its assistance in response to improving skill.

4 DISCUSSION

4.1 Key Findings

Our simulation study produces eight principal findings with policy
relevance:

1. Deskilling traps are real and domain-dependent. The
model identifies specific parameter regimes where workers lose
both competence and awareness of incompetence. Aviation is uniquely
vulnerable: all experience levels enter traps due to the combina-
tion of very high Al reliability (reducing error signals) and high
skill decay rate (from lack of manual practice). Medicine shows
intermediate vulnerability, with novices particularly at risk.

2. The reliability paradox. More reliable Al is paradoxically
more dangerous for skill maintenance. A critical threshold exists (ap-
proximately 0.938 for our software engineering calibration) above
which deskilling traps become nearly certain. This directly chal-
lenges the intuition that better Al is uniformly beneficial.
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3.Scaffolded autonomy is dramatically effective. Among the
four interventions tested, scaffolded autonomy—where Al reduces
its assistance as worker skill grows—produces a 20-fold improve-
ment in final skill level. The key mechanism is restoring the practice
signal: by forcing graduated independence, the intervention breaks
the positive feedback loop between high reliance and skill decay.

4. Adversarial training improves metacognition but not
skill. Deliberately injecting errors improves metacognitive calibra-
tion (0.448 vs. 0.388) and reduces total harm by 10.4%, but does not
restore the practice volume needed for skill growth. This suggests
that error detection and skill acquisition are partially independent
processes.

5. Generational asymmetry is persistent. Workers who devel-
oped skills before Al adoption maintain approximately 3x higher
skill than “Al-native” workers even after 300 weeks of identical
conditions. This gap, while narrowing over time, suggests that pre-
AT skill acquisition provides a lasting supervisory advantage that
cannot be replicated by Al-assisted experience alone.

6. Deskilling dynamics are robust to parameter perturba-
tion. Sensitivity analysis reveals that while the skill decay rate
is the most influential parameter (producing a 23X range in out-
comes), no reasonable parameter variation eliminates the funda-
mental tendency toward deskilling. Metacognition remains stable
at approximately 0.393 across all perturbations, indicating that the
metacognitive dynamics are structurally robust.

7. Scaffolded autonomy is necessary and nearly sufficient.
Combined intervention analysis demonstrates that adding explain-
ability requirements or adversarial training to scaffolded auton-
omy provides less than 0.2% marginal improvement. The best non-
scaffolded combination (scheduled practice plus explainability)
achieves only skill = 0.254, confirming that no combination of
passive interventions can substitute for active assistance reduction.

8. Deskilling traps are genuinely trapping. Recovery ex-
periments show that once a worker enters a deskilling trap, only
scaffolded autonomy enables escape—and recovery requires ap-
proximately 203 weeks (nearly 4 years). This temporal asymmetry
between rapid skill erosion and slow recovery underscores the
importance of prevention over remediation.

4.2 Practical Deployment Implications of
Recovery Dynamics

The recovery results from Experiment 7 carry sobering implica-
tions for organizations that have already deployed Al without skill-
preservation safeguards. The finding that only scaffolded autonomy
enables recovery from deskilling traps—and that recovery takes
approximately 4 years—means that organizations cannot simply
“switch off” the Al and expect workers to regain competence. The
deskilling trap creates a form of organizational lock-in: once
workers have lost supervisory skill, the organization becomes de-
pendent on the Al system, making it difficult to switch providers,
respond to Al failures, or maintain human oversight as required
by emerging regulations. The 203-week recovery timeline also im-
plies that remediation programs must be sustained commitments,
not short-term training interventions. Organizations should view
skill preservation as ongoing maintenance rather than a one-time
training cost.
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4.3 Synthesizing Combined Intervention
Findings

The bimodal structure revealed by Experiment 6—where combina-
tions with scaffolded autonomy cluster near skill ~ 0.98 and all oth-
ers cluster below 0.26—provides a clear design principle: scaffolded
autonomy should be the foundation of any skill-preservation
strategy. Other interventions may serve complementary purposes
(adversarial training for metacognitive maintenance, explainability
for knowledge transfer), but they cannot substitute for the funda-
mental mechanism of progressively restoring practice opportunities.
This finding simplifies the design space for practitioners: rather
than optimizing complex multi-intervention protocols, organiza-
tions should focus on implementing effective scaffolded autonomy
and treat additional interventions as optional enhancements.

4.4 Limitations

Our model makes several simplifying assumptions. First, domain
parameters are calibrated from literature estimates rather than em-
pirical measurement; the precise location of deskilling thresholds
depends on these calibrations. Second, the model assumes homoge-
neous workers within each experience category; real workforces
exhibit substantial individual variation in learning rates, metacog-
nitive ability, and disposition toward Al reliance. Third, the model
treats Al capability as static; in practice, Al systems improve over
time, which may shift the supervisory challenge. Fourth, social
and organizational factors (incentives, peer learning, institutional
memory) are not modeled but likely play significant roles. Fifth, the
sensitivity analysis (Experiment 5) varies one parameter at a time;
joint parameter interactions could reveal additional dynamics not
captured by univariate sweeps. Finally, as a computational model,
our results generate predictions that require empirical validation
through longitudinal studies.

4.5 Policy Implications

For organizations deploying AI: implement scaffolded autonomy
where Al gradually reduces assistance as workers demonstrate
competence. At minimum, mandate periodic unassisted assessment
to monitor supervisory skill. The combined intervention results
confirm that scaffolded autonomy should be the cornerstone of
any skill-preservation strategy, with other interventions serving as
optional supplements.

For training program designers: include deliberate unassisted
practice modules, especially for workers who entered the profession
with Al assistance. The generational asymmetry finding suggests
that “Al-native” workers need qualitatively different training from
those who developed skills before Al adoption. The recovery dy-
namics results further emphasize that remediation programs must
be sustained over years, not weeks.

For regulators in safety-critical domains: the aviation results
are particularly concerning. Current regulations mandate man-
ual flying proficiency checks for pilots using autopilot; analogous
requirements may be needed in other domains where Al is sup-
planting human judgment (e.g., medical diagnosis, financial risk
assessment). The reliability paradox suggests that regulatory atten-
tion should focus precisely on the most reliable Al systems, as these
pose the greatest deskilling risk. The finding that deskilling traps

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044



1045
1046
1047
1048

1049

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

Conference’17, July 2017, Washington, DC, USA

are genuinely trapping—with recovery requiring approximately 4
years—suggests that regulatory frameworks should mandate pre-
ventive measures rather than relying on remedial training after
skill loss has occurred.

5 CONCLUSION

We have presented a formal dynamical systems model of supervi-
sory skill evolution under Al assistance and used it to investigate the
open question of whether Al assistance hinders the development of
skills needed to supervise automated tasks. Our computational ex-
periments reveal that the answer is conditionally affirmative: under
realistic parameter regimes, Al assistance produces deskilling traps
where workers lose both supervisory competence and awareness of
their incompetence. The severity depends on domain characteris-
tics, with high-reliability AI domains being paradoxically the most
dangerous.

The most promising mitigation is scaffolded autonomy, which
achieves near-complete skill preservation by coupling Al assistance
reduction to skill growth. Sensitivity analysis confirms this finding
is robust: the skill decay rate is the most influential model parameter
(23 range in outcomes), yet no parameter perturbation eliminates
the fundamental deskilling tendency. Combined intervention analy-
sis demonstrates that scaffolded autonomy is not only effective but
necessary and nearly sufficient—additional interventions provide
less than 0.2% marginal improvement. Most critically, recovery ex-
periments reveal that deskilling traps are genuinely trapping: only
scaffolded autonomy enables escape, and recovery requires approx-
imately 203 weeks, underscoring the importance of prevention over
remediation.

These findings point toward a design principle for human-AI
systems: the Al should be designed not only to maximize immediate
task performance but also to maintain the human skills needed for
oversight. Our model generates testable predictions about deskilling
dynamics, reliability thresholds, intervention effectiveness, and
recovery timelines that can be evaluated through longitudinal field
studies. We hope this work motivates such empirical investigations
and informs the design of AI deployment policies that account for
long-term human skill sustainability.

All simulation code is available for reproducibility. The model
parameters can be recalibrated as empirical data on skill dynamics
under Al assistance becomes available.
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