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The Skill Formation Paradox: How Al Coding Tools Boost
Productivity While Impeding Novice Developer Learning

Anonymous Author(s)

ABSTRACT

Al coding assistants provide substantial productivity gains to novice
software developers, yet their impact on underlying skill forma-
tion remains an open question with significant implications for
the software engineering workforce. We present a computational
cognitive model that simulates how novice developers’ skills evolve
over a 12-month period under three Al assistance regimes: no Al
(control), unrestricted Al with passive acceptance behavior, and Al
with scaffolded engagement requirements. The model operational-
izes six skill dimensions—syntactic fluency, algorithmic reasoning,
debugging, code comprehension, architectural judgment, and au-
tonomous learning—and is grounded in established theories of
retrieval-based strengthening, desirable difficulty, and skill com-
pilation from cognitive science. Our simulation of 240 developers
(80 per condition) over 252 working days reveals a skill forma-
tion paradox: unrestricted Al use produces a large negative effect
on skill development (Cohen’s d = —0.97), with the strongest im-
pairment in highly automatable skills such as syntactic fluency
(d = —4.79), while scaffolded engagement nearly eliminates this
deficit (d = +0.10 overall). Sensitivity analysis identifies a criti-
cal crossover threshold at processing depth 0.75, below which AI
assistance harms skill formation and above which it becomes ben-
eficial. We further document a productivity—skill dissociation in
which unrestricted Al users appear more productive (3.69 vs. 3.21
tasks/day) yet possess weaker underlying skills (0.56 vs. 0.64 on
tool-removed assessments), creating a dependency trap invisible
under continued AI access. Bootstrap confidence intervals over
50 independent seeds confirm the robustness of these effects (un-
restricted d = —1.12 [-1.37, —0.89]; scaffolded d = +0.08 [—0.36,
+0.38]), and dimension-specific crossover analysis reveals that syn-
tactic fluency and autonomous learning never reach a break-even
threshold, while algorithmic reasoning crosses as early as ¢ = 0.44.
These findings generate testable predictions for empirical studies
and provide actionable design guidance for Al coding tools that
preserve novice learning.
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1 INTRODUCTION

The rapid adoption of Al coding assistants—such as GitHub Copi-
lot, ChatGPT, and Claude—has transformed software development
workflows. Empirical evidence demonstrates that these tools yield
substantial productivity gains, particularly for less experienced
developers [9, 16, 18]. Shen et al. [18] document that junior de-
velopers experience disproportionately large speed improvements
when using Al assistance, a finding consistent with earlier con-
trolled studies [16].

However, productivity and skill are distinct constructs. A novice
developer who completes tasks faster with Al assistance is not nec-
essarily learning at the same rate as one who struggles through
tasks independently. Shen et al. [18] explicitly identify this gap,
noting that “the effect of these tools on the skill formation of this
subgroup remains unknown.” This open question has profound
implications: if Al tools accelerate task completion while retarding
skill acquisition, the software industry faces a growing cohort of
developers who are productive only with Al scaffolding and increas-
ingly dependent on tools they cannot fully evaluate or override.

The concern is grounded in well-established cognitive science
principles. Retrieval-based strengthening theory [5] holds that skills
consolidate through active recall and application; Al tools that pro-
vide ready-made solutions may bypass this retrieval process. The
desirable difficulty framework [4] demonstrates that moderate chal-
lenge during practice enhances long-term retention, even at the
cost of immediate performance—precisely the trade-off that Al as-
sistance reconfigures. Skill compilation theory from the ACT-R
architecture [1] posits that declarative knowledge becomes pro-
cedural through practice; if Al handles the procedural step, the
compilation process is interrupted.

This paper addresses the open problem through a computational
cognitive model that simulates multi-dimensional skill formation
under different Al assistance regimes. Our contributions are:

(1) A formal model of novice skill formation that operational-
izes six programming skill dimensions and captures the
interaction between Al assistance intensity, cognitive pro-
cessing depth, and learning dynamics.

(2) Quantitative predictions from a simulated three-arm ran-
domized trial (no Al, unrestricted Al, scaffolded AI) with
240 developers over 12 months, yielding effect sizes, depen-
dency trajectories, and sensitivity analyses.
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(3) Identification of a skill formation paradox—unrestricted
Al boosts productivity while significantly impairing skill
development—and a crossover threshold in processing depth
that determines whether Al is net-positive or net-negative
for learning.

(4) Actionable design implications for Al coding tools and edu-
cational interventions that preserve novice learning.

1.1 Related Work

Al Tools and Developer Productivity. Multiple studies establish
that Al coding assistants increase developer throughput. Peng et
al. [16] report a 55.8% faster task completion rate with GitHub
Copilot in a controlled experiment. Hou et al. [9] find productivity
gains across three field experiments, with larger effects for less
experienced developers. Shen et al. [18] provide a comprehensive
analysis showing that junior developers benefit disproportionately,
but explicitly flag skill formation as an unresolved question. How-
ever, the productivity narrative is not uniform: Becker et al. [3]
find that Al tools actually increased task completion time by 19%
for experienced open-source developers, suggesting that productiv-
ity effects depend critically on experience level and task context.
Vukovic et al. [22] report that enterprise developers perceive 12—
25% productivity gains, with 33% of code being Al-generated, but
note substantial variation across individuals and task types.

Al and Learning in Educational Contexts. Bastani et al. [2] demon-
strate that access to GPT-4 in a mathematics tutoring context harms
learning outcomes, providing direct evidence that Al assistance
can impede skill acquisition. Kazemitabaar et al. [11] study novice
programmers using Al code generators and find mixed effects on
learning, with benefits dependent on how students engage with the
generated code. Denny et al. [7] survey the landscape of computing
education in the generative Al era, identifying the need for ped-
agogical frameworks that leverage AI while preserving learning.
Prather et al. [17] document a widening gap between novice and
expert developers when Al assistance is available, raising concerns
about differential skill development. Shihab et al. [19] find that
GitHub Copilot accelerates student task completion by 35% but
raise concerns about reduced code comprehension. A three-arm
RCT at TUM [20] comparing scaffolded AI (Iris) versus ChatGPT
versus no-Al control (n = 275) finds that both AI conditions boost
exam performance but produce no learning gain on transfer tasks—a
dissociation directly consistent with our model’s predictions. Fan et
al. [8] report that Al pair programming produces a moderate moti-
vation boost (d = 0.35) and performance advantage in a 234-student
study, but do not measure long-term skill retention. Ma et al. [13]
document metacognitive laziness with 91.7% AI adoption among
programming students, finding that scaffolding interventions can
partially mitigate passive acceptance behavior.

Cognitive Foundations. The desirable difficulty framework [4]
and retrieval practice research [5] provide the theoretical basis
for predicting that reducing task difficulty through AI assistance
may impair long-term learning. The expertise reversal effect [10]
suggests that scaffolding beneficial for novices may become coun-
terproductive as expertise develops. Anderson’s ACT-R theory [1]

Anon.

models how procedural skills are acquired through practice, offer-
ing a formal framework for reasoning about how Al intervention
in the practice process affects skill compilation. The Knowledge-
Learning-Instruction framework [12] provides additional theoreti-
cal grounding for understanding how instructional interventions
interact with learning processes.

Human-AI Interaction in Programming. Vaithilingam et al. [21]
evaluate the usability of Al code generation tools and find that
developers often accept suggestions without deep understanding.
Mozannar et al. [14] model user behavior during Al-assisted pro-
gramming, characterizing the spectrum from passive acceptance to
active engagement. Parasuraman and Riley [15] provide the founda-
tional framework on automation use, misuse, and skill degradation—
the “automation complacency” phenomenon that may manifest in
Al-assisted coding. Weber et al. [23] and Cui et al. [6] examine the
broader impacts of Al tools on software engineering tasks and help-
seeking behavior, respectively, contributing to our understanding
of how Al tools alter the learning environment.

Gap Addressed. While prior work establishes productivity ef-
fects and raises learning concerns, no existing study provides a
formal model that (a) decomposes programming skill into distinct
dimensions, (b) models the interaction between Al assistance in-
tensity and cognitive engagement, and (c) generates quantitative
predictions for longitudinal skill trajectories under different Al use
regimes. Our computational approach fills this gap and provides a
bridge between cognitive theory and empirical study design.

2 METHODS
2.1 Model Overview

We develop a computational cognitive model of skill formation that
simulates how novice developers’ programming abilities evolve
over time under different Al assistance conditions. The model repre-
sents each developer as a vector of skill levels across six dimensions,
updated daily through task-driven learning dynamics. Three experi-
mental conditions are simulated: Control (no Al), Unrestricted Al
(full AT access with passive acceptance behavior), and Scaffolded
AI (AT access with mandatory engagement: developers must read,
modify, and explain Al-generated code before proceeding). Figure 1
provides a visual overview of the computational model architecture
and the interactions between its components.

2.2 Skill Dimensions

Programming competence is operationalized as a six-dimensional
skill vector s € [0, 1]°:

(1) Syntactic fluency: ability to write correct code from spec-
ifications without reference materials.

(2) Algorithmic reasoning: capacity to solve novel computa-
tional problems.

(3) Debugging;: skill at locating and fixing defects in unfamiliar
code.

(4) Code comprehension: ability to read, understand, and
predict the behavior of code.

(5) Architectural judgment: capacity to evaluate and design
system-level structures.
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Figure 1: Computational model architecture for skill forma-
tion under Al assistance. The model tracks six skill dimen-
sions updated through task-driven learning dynamics, with
Al modulating effective difficulty and cognitive processing
depth across three experimental conditions.

(6) Autonomous learning: meta-skill of learning new frame-
works and tools independently.

Each dimension has a corresponding Al automation weight w; €
[0, 1] reflecting how effectively current Al tools can assist with that
skill type. We set w = (0.80,0.50, 0.35,0.25,0.15, 0.10), reflecting
the observation that Al tools are most effective at syntax-level
assistance and least effective at architectural and meta-cognitive
support.

2.3 Task-Driven Learning Dynamics

Each simulated working day, a developer encounters T = 5 coding
tasks. Each task activates 1-3 skill dimensions (randomly sampled
with probabilities 0.4, 0.4, 0.2) and has a difficulty § ~ A(0.45,0.15?)
clipped to [0.05,0.95].

Success Probability. The probability of successfully completing a
task component in dimension i is modeled as a logistic function:

P(success) = o(k - (si — Oef)) (1)

where o is the sigmoid function, k = 8 controls steepness, s; is cur-
rent skill in dimension i, and S is the effective difficulty (reduced
by Al in treatment conditions).

Al Modulation. In the Unrestricted AI condition, Al reduces
effective difficulty by factor (1 —0.55 - w;) and cognitive processing
depth to 0.15 + 0.85 - (1 — w;). In the Scaffolded AI condition,
difficulty reduction is halved and processing depth is maintained
at 0.70 +0.30 - (1 — 0.3w;).

Learning Signal. The learning signal from each task attempt
integrates three factors:

¢ = D(4,s;) - F(success,§ —s;j) - ¢ )

where D captures desirable difficulty (a Gaussian centered at gap
= 0.10, reflecting optimal learning when tasks are slightly above
current skill), F is a success/failure modulator (successful attempts
yield factor 0.8; near-miss failures yield 0.4; distant failures yield
0.1), and ¢ is the processing depth.

Conference’17, July 2017, Washington, DC, USA

Table 1: Overall skill trajectories by condition. All values are
mean skill levels on tool-removed assessments (scale 0-1).
Growth is the difference between final and initial assess-
ments.

Condition Initial Final Growth
Control (No AI)  0.239  0.639  +0.400
Unrestricted AI ~ 0.229 0.564 +0.334
Scaffolded Al 0.234  0.644 +0.409

Skill Update with Transfer. Raw learning signals are transformed
through a transfer matrix T that captures cross-dimensional learn-
ing transfer (e.g., improvement in algorithmic reasoning partially
transfers to debugging). Skills update as:

s—s+a-(t-T)-f - mOs 3)

where o = 0.006 is the learning rate, f = 0.0005 is the forgetting
rate, and m is a binary mask indicating dimensions not exercised
in the current task (implementing use-it-or-lose-it decay).

2.4 Experimental Design

We simulate a three-arm parallel design with n = 80 developers per
condition, over D = 252 working days (approximately 12 calendar
months). Initial skill levels are sampled from A (0.20, 0.05%) clipped
to [0.05,1.0], representing novice developers with 0-2 years of
experience.

Assessment Protocol. Tool-removed skill assessments are con-
ducted monthly (every 21 working days), yielding 12 assessment
time points. Assessment scores equal the true skill level plus Gauss-
ian noise N (0, 0.032), simulating measurement error.

Outcome Measures. Primary outcomes include: (1) Skill growth:
change in tool-removed skill level from first to last assessment;
(2) Effect sizes: Cohen’s d between conditions at final assessment;
(3) Dependency index: DI = (Al-assisted — unassisted) / Al-assisted
performance; (4) Productivity: tasks completed per day with and
without Al Statistical significance is evaluated via permutation
tests with 5,000 permutations.

Sensitivity Analysis. We systematically vary the processing depth
parameter ¢ from 0.05 to 0.95 (in steps of 0.05) to identify the
crossover threshold at which Al assistance transitions from net-
negative to net-positive for skill formation. This analysis uses 40
developers per condition to maintain computational efficiency.

3 RESULTS
3.1 Overall Skill Formation

Table 1 summarizes skill trajectories across conditions. All three
groups begin with comparable skill levels (~ 0.23). After 12 months,
the Control group reaches a mean skill of 0.639, the Unrestricted Al
group reaches 0.564, and the Scaffolded AI group reaches 0.644. The
Unrestricted Al condition produces 16.4% less skill growth than
Control, while Scaffolded Al produces growth nearly identical to
Control.
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The overall Cohen’s d between Unrestricted Al and Control is
—0.97 (large negative effect), indicating that unrestricted Al use
significantly impairs skill development. The Scaffolded Al vs. Con-
trol effect size is d = +0.10 (negligible), indicating that scaffolded
engagement preserves nearly all of the learning benefit of unaided
practice.

3.2 Dimension-Specific Effects

Figure 2 displays skill trajectories for each of the six dimensions
across all three conditions. The magnitude of AI's negative effect is
strongly correlated with the dimension’s automation weight.

Table 2 reports the dimension-specific final skill levels and ef-
fect sizes. Syntactic fluency shows the largest impairment under
unrestricted Al (d = —4.79, p < 0.001), followed by algorithmic
reasoning (d = —1.97, p < 0.001). Architectural judgment shows
the smallest effect (d = —0.27, p = 0.096), consistent with Al tools
providing less assistance for high-level design decisions. Under Scaf-
folded Al most dimensions show small or non-significant effects
relative to Control, with algorithmic reasoning showing a positive
effect (d = +0.54, p < 0.001) and autonomous learning showing a
positive effect (d = +0.57, p < 0.001), suggesting that scaffolded AI
engagement may enhance certain reasoning and meta-cognitive
skills.

Figure 3 visualizes the dimension-specific results as a heatmap,
clearly showing the gradient of Al impact across the automation
spectrum. The Spearman correlation between automation weight w;
and Unrestricted Al effect size is p = —0.94 (p = 0.005), confirming
that AI most impairs skills in dimensions where it provides the
most assistance.

3.3 The Productivity-Skill Dissociation

Figure 4 illustrates the central paradox: unrestricted Al users appear
more productive when measured with Al access (3.69 tasks/day vs.
3.21 for Control) but possess weaker underlying skills when assessed
without AI (mean skill 0.564 vs. 0.639).

This dissociation has practical implications: organizations evalu-
ating developer performance based on Al-assisted output metrics
will systematically overestimate the capability of developers who
rely heavily on Al tools. The gap between measured productivity
and genuine skill represents a hidden dependency that only becomes
visible when AT access is removed or when developers face novel
problems outside AI's competence.

3.4 Dependency Index

Figure 5 tracks the Dependency Index (DI) over time. Both Al condi-
tions begin with high DI values (~ 0.62) due to novice-level starting
skills. As skills develop, DI decreases—but more slowly for Unre-
stricted Al users. At month 12, the Unrestricted Al group retains
a DI of 0.236 compared to 0.182 for Scaffolded Al indicating that
unrestricted users remain more dependent on Al tools despite 12
months of practice.

3.5 Sensitivity Analysis: The Crossover
Threshold

Figure 6 presents the sensitivity analysis varying processing depth
¢ from 0.05 to 0.95. Below ¢ =~ 0.75, Al assistance produces a net

Anon.

negative effect on skill formation. Above this threshold, the learning
benefit of reduced difficulty and increased success rate outweighs
the cost of reduced cognitive effort, and Al becomes net-positive.

This crossover threshold at ¢ = 0.75 has direct design implica-
tions: Al tools that ensure developers engage with at least 75% of
the cognitive depth of unaided work will produce net-positive skill
outcomes. The default Unrestricted Al processing depth of 0.15 falls
far below this threshold, explaining the large negative skill effect.
The Scaffolded Al condition’s processing depth of 0.70 approaches
but does not quite reach the threshold, explaining its near-neutral
overall effect.

3.6 Effect Size Summary

Figure 7 displays Cohen’s d effect sizes for all six dimensions under
both AI conditions compared to Control. The key insight is that
the pattern of effects is qualitatively different between conditions:
Unrestricted Al shows uniformly negative effects that scale with
automation weight, while Scaffolded AI shows a mixed pattern
with small negative effects on some dimensions and small positive
effects on others.

3.7 Robustness Analysis

To assess the stability of our findings, we conduct three additional
analyses: bootstrap replication, dimension-specific crossover analy-
sis, and multi-parameter sensitivity.

Bootstrap Confidence Intervals. We replicate the full simulation
across 50 independent random seeds (each with n = 40 develop-
ers per condition) and compute 95% confidence intervals for all
effect sizes. Figure 8 displays the resulting forest plot. The over-
all unrestricted-vs-control effect size is d = —1.12 [95% CI: —1.37,
—0.89], confirming a robust large negative effect. The scaffolded-
vs-control effect is d = +0.08 [—0.36, +0.38], with the confidence
interval spanning zero, confirming that scaffolded engagement pro-
duces no reliable skill impairment. At the dimension level, syntactic
fluency shows the most robust negative effect under unrestricted
Al (d = —4.75 [-5.98, —3.90]), while architectural judgment and
autonomous learning show confidence intervals that include zero,
indicating less reliable effects for low-automation dimensions.

Dimension-Specific Crossover Thresholds. While the overall crossover

threshold is ¢ ~ 0.75, individual skill dimensions exhibit markedly
different thresholds. Algorithmic reasoning crosses earliest at ¢ =
0.44, followed by debugging (¢ = 0.53), code comprehension (¢ =
0.65), and architectural judgment (¢ = 0.78). Critically, syntactic
fluency and autonomous learning never reach a positive crossover
within the tested range (¢ € [0.05,0.95]): for these dimensions, Al
assistance produces a negative skill delta at every processing depth
tested, though the deficit shrinks monotonically toward zero. This
finding suggests that certain skill types are inherently vulnerable to
Al-assisted atrophy regardless of engagement depth, a result with
direct implications for tool design.

Multi-Parameter Sensitivity. Figure 9 presents a heatmap of the
skill delta (AT minus Control) across a 9 X 7 grid of processing depth
(¢ € [0.1,0.9]) and Al difficulty reduction (r € [0.2,0.8]). The
transition from negative to positive delta traces a diagonal bound-
ary: higher difficulty reduction requires correspondingly higher
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Figure 2: Skill trajectories across six programming dimensions over 12 months. Lines show group means; shaded regions show
95% confidence intervals. The Unrestricted Al condition (red) shows progressively diverging trajectories from Control (green),
with the largest gaps in highly automatable dimensions (syntactic fluency, algorithmic reasoning). The Scaffolded AI condition

(blue) closely tracks Control across all dimensions.

Table 2: Dimension-specific final skill levels and effect sizes. Cohen’s d compares each Al condition against Control; negative
values indicate Al-induced skill impairment. p-values from permutation tests (5,000 permutations). Dimensions ordered by Al

automation weight (descending).

AI Weight Final Skill (Mean) Cohen’s d vs. Control
Dimension Wi Control Unrest. AT Scaff. Al Unrest. (p) Scaff. (p)
Syntactic Fluency 0.80 0.653 0.388 0.652 —4.79 (< .001)  —0.01 (0.9438)
Algorithmic Reasoning 0.50 0.643 0.573 0.661 —-1.97 (< .001) +0.54 (< .001)
Debugging 0.35 0.659 0.611 0.647 —1.32 (< .001) —0.34(0.031)
Code Comprehension 0.25 0.663 0.624 0.654 —1.14 (< .001)  —0.28 (0.075)
Architectural Judgment 0.15 0.655 0.645 0.661 —0.27 (0.096)  +0.16 (0.341)
Autonomous Learning 0.10 0.560 0.541 0.587 —0.45 (0.005)  +0.57 (< .001)

processing depth to achieve net-positive outcomes. At the default
unrestricted settings (¢ = 0.15, r = 0.55), the skill deficit is ap-
proximately —0.08; achieving net-positive skill formation requires
either ¢ > 0.80 at r = 0.55 or reducing r below 0.3 at ¢ = 0.70.
Learning rate and forgetting rate sweeps confirm that the qualita-
tive pattern—unrestricted Al harms skill formation, scaffolded AI
preserves it—holds across all tested parameter combinations.

4 DISCUSSION
4.1 The Skill Formation Paradox

Our model predicts a fundamental tension between short-term
productivity and long-term skill development. Unrestricted Al use—
the default mode in which most novice developers interact with
Al tools—produces a large negative effect on skill formation (d =
—0.97) while simultaneously boosting observable productivity. This
productivity—skill dissociation creates a systemic risk: organizations
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Figure 3: Heatmap of final skill levels by condition and di-
mension. Warmer colors indicate higher skill. The Unre-
stricted AI condition shows notably lower skill in the left
columns (high-automation dimensions) compared to Control
and Scaffolded AL
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Figure 4: The productivity—skill dissociation. (a) Observed
productivity with AI access: AI users complete more tasks
daily. (b) Underlying skill on tool-removed assessments: Al
users develop weaker skills over time. This dissociation cre-
ates a dependency trap that is invisible under continued Al
access.
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Figure 5: Dependency Index (DI) over 12 months. Higher
values indicate greater reliance on Al tools. Unrestricted Al
users reduce dependency more slowly than Scaffolded AI
users, converging to a higher steady-state dependency level.

optimizing for measurable output will inadvertently produce devel-
opers who cannot function without Al scaffolding.

Anon.
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Figure 6: Sensitivity analysis. (a) Final skill levels as a func-
tion of cognitive processing depth during Al-assisted work.
(b) Skill delta (AI minus Control): the crossover from nega-
tive to positive occurs at processing depth ~ 0.75. Below this
threshold, AT harms skill formation; above it, AT helps.

MediunSm:

Autonomous Learning -

Architectural Judgment -

Code Comprehension

Debugging 4

Algorithmic Reasoning -

Syntactic Fluency o
yntactic Fluency W Unrestricted Al vs. Control

=== Scaffolded Al vs. Control

-5 -4 -3 -2 -1 0
Cohen's d (Effect Size)

Figure 7: Cohen’s d effect sizes by dimension. Unrestricted AI
(red) shows consistently negative effects, largest for highly
automatable skills. Scaffolded AI (blue) shows near-zero ef-
fects across most dimensions, with modest positive effects
for algorithmic reasoning and autonomous learning.
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Figure 8: Forest plot of Cohen’s d effect sizes with 95% boot-
strap confidence intervals (50 seeds). Unrestricted AI (red)
shows consistently negative effects across dimensions, with
the most robust impairment in syntactic fluency. Scaffolded
Al (blue) shows confidence intervals overlapping zero for all
dimensions.

The magnitude of the effect is dimension-dependent and strongly
correlated with the degree of Al automation. Syntactic fluency—
the skill most readily automated by current Al tools—shows the
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Figure 9: Multi-parameter sensitivity heatmap. Skill delta (AI
minus Control) as a function of processing depth (¢, y-axis)
and Al difficulty reduction (r, x-axis). Blue regions indicate
net skill harm; red regions indicate net skill benefit. The
white contour marks the zero-crossing boundary. Default
unrestricted Al parameters (¢ = 0.15, r = 0.55) fall deep in the
harm zone.

largest impairment (d = —4.79). While one might argue that syntax
skills become less important when Al handles them, this argument
overlooks two concerns. First, syntactic fluency is foundational;
debugging, code review, and architectural reasoning all require
the ability to read and write code fluently. Second, Al tools will
not always be available, accurate, or applicable; developers with
atrophied fundamental skills face amplified failures when Al cannot
help.

4.2 Scaffolding as a Solution

The Scaffolded AI condition demonstrates that the negative skill
effect is not inherent to Al tool use but rather to the mode of engage-
ment. When novices are required to actively process Al output—
reading, modifying, and explaining generated code before incor-
porating it—skill development proceeds at nearly the same rate as
unaided practice (d = +0.10). This finding aligns with prior work
on active learning and desirable difficulty [4] and suggests concrete
design interventions:

e Explain-before-accept: Require novices to articulate why
Al-generated code works before incorporating it.

e Modification prompts: Present Al suggestions in a form
that requires adaptation rather than verbatim acceptance.

o Interleaved practice: Periodically disable Al assistance to
force unscaffolded practice.

o Progressive withdrawal: Gradually reduce Al assistance
as skill levels increase, analogous to training wheels.

4.3 The Crossover Threshold

The sensitivity analysis identifies a processing depth threshold
of § = 0.75 at which AI transitions from skill-harming to skill-
enhancing. This has quantitative design implications: any Al in-
teraction protocol that maintains at least 75% of the cognitive en-
gagement of unaided work should produce net-positive learning
outcomes. Current Al tools that offer frictionless code completion
(estimated ¢ ~ 0.15) are far below this threshold, while structured
engagement protocols can approach or exceed it.
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4.4 Limitations

Our findings are based on a computational model, not empirical
data from human participants. The model makes assumptions about
cognitive architecture (learning rates, forgetting dynamics, transfer
structure) that, while grounded in established theory, may not pre-
cisely match real-world learning. Key limitations include: (1) The
model does not capture motivational factors—novices restricted
from Al tools may be demotivated, while those with Al may expe-
rience increased enjoyment. (2) The task environment is simplified;
real software development involves social interaction, code review,
and collaborative problem-solving that may modify learning dy-
namics. (3) The processing depth parameter, while theoretically
motivated, conflates multiple cognitive processes into a single scalar.
(4) Al tool capabilities evolve rapidly; the automation weights used
here reflect current-generation tools and may shift as Al improves.

These limitations are inherent to the computational modeling
approach but are offset by its strengths: the ability to generate
precise, testable predictions; systematic exploration of parameter
space; and low cost relative to longitudinal human studies.

4.5 Empirical Validation

Our model generates several testable predictions for empirical stud-
ies:

(1) Dimension-specificity: The Al-induced skill deficit should
be largest for syntactic and algorithmic skills, smallest for
architectural and meta-cognitive skills.

(2) Engagement moderation: Active engagement protocols
should substantially reduce or eliminate the skill deficit.

(3) Dependency trap: Tool-removed assessments should re-
veal skill gaps invisible in Al-assisted performance metrics.

(4) Threshold effect: Interventions increasing processing depth
above ~0.75 should flip the AI effect from negative to posi-
tive.

Emerging empirical evidence is qualitatively consistent with
these predictions. Shen et al. [18] report a 17% skill reduction
(d = 0.738) in a 52-participant RCT with an asyncio program-
ming library—the same direction and approximate magnitude as
our model’s prediction of a 16.4% growth deficit (d = —0.97). The
TUM three-arm trial [20] finds performance boosts with no learning
gain, directly paralleling our predicted productivity-skill dissocia-
tion. Becker et al. [3] find that experienced developers are actually
slowed by Al tools, consistent with our model’s prediction that the
productivity benefit is largest for novices (where Al bridges the
largest skill gap) and may invert for experts.

We recommend a Randomized Longitudinal Skill Assessment
(RLSA) design—a 12-month, three-arm trial with monthly tool-
removed assessments across all six skill dimensions—as the empiri-
cal study most directly suited to testing these predictions. Figure 10
illustrates the proposed RLSA framework, showing the three-arm
randomized design and assessment structure.

5 CONCLUSION

We have presented a computational cognitive model that addresses
the open question of how Al coding tools affect novice developer
skill formation. Our simulation of 240 developers over 12 months

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812



813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

Conference’17, July 2017, Washington, DC, USA

Randomized Longitudinal Skill Assessment (RLSA) Framework
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Figure 10: The Randomized Longitudinal Skill Assessment
(RLSA) framework. A three-arm parallel design with Con-
trol (no AI), Unrestricted Al, and Scaffolded AI conditions,
incorporating monthly tool-removed assessments across six
skill dimensions over 12 months.

reveals a skill formation paradox: unrestricted Al use boosts produc-
tivity while significantly impeding underlying skill development
(d = —0.97; bootstrap 95% CI: [-1.37, —0.89]), with the strongest
effects in highly automatable skill dimensions. Critically, scaffolded
engagement—requiring active processing of Al output—nearly elim-
inates this deficit (d = +0.10), and sensitivity analysis identifies a
processing depth threshold at ¢ ~ 0.75 that separates skill-harming
from skill-enhancing AT use.

These findings have immediate practical implications. For tool
designers: incorporate scaffolding features that promote active
engagement, such as explain-before-accept prompts and modifi-
cation requirements, particularly for users identified as novices.
For engineering managers: supplement Al-assisted productivity
metrics with periodic tool-removed skill assessments to detect hid-
den dependency. For educators: integrate Al tools into curricula
with explicit scaffolding protocols rather than unrestricted access,
and teach students to evaluate rather than merely accept Al out-
put. For researchers: prioritize empirical studies that disentangle
productivity from skill, measure multiple skill dimensions, and test
engagement-mode interventions.

The skill formation paradox is not an argument against Al cod-
ing tools—it is an argument for designing them thoughtfully, with
attention to the cognitive processes that drive genuine skill devel-
opment. The gap between productivity and competence is invisible
when AT access continues, making proactive assessment and delib-
erate practice design essential for the next generation of software
developers.

REFERENCES

[1] John R. Anderson. 1982. Acquisition of Cognitive Skill. Psychological Review 89,
4 (1982), 369-406.

[2] Hamsa Bastani, Osbert Bastani, Alp Sungu, Haosen Ge, Ozge Kabakc1, and Rei Ma-
riman. 2024. Generative AI Can Harm Learning. arXiv preprint arXiv:2410.15745
(2024).

[3] Lara Becker, Alexander Rush, et al. 2025. Measuring the Impact of Early-
2025 Al on Experienced Open-Source Developer Productivity. arXiv preprint
arXiv:2507.09089 (2025).

[4] Robert A. Bjork. 1994. Memory and Metamemory Considerations in the Training
of Human Beings. In Metacognition: Knowing About Knowing. MIT Press, 185-
205.

[5

[6]

[14

[15]

[16

[17]

(19]

[20

[21

[22]

Anon.

Robert A. Bjork and Elizabeth L. Bjork. 1992. A New Theory of Disuse and an Old
Theory of Stimulus Fluctuation. From Learning Processes to Cognitive Processes:
Essays in Honor of William K. Estes 2 (1992), 35-67.

Zheng Cui, Alejandra Zambrano, Jerry Lo, Michael Lee, and Juho Leinonen. 2024.
The Effects of Generative Al on Computing Students’ Help-Seeking Preferences.
arXiv preprint arXiv:2410.12944 (2024).

Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A. Becker, and Brent N. Reeves. 2024. Computing Education
in the Era of Generative AL. Commun. ACM 67, 2 (2024), 56—67.

G. Fan, D. Liu, R. Zhang, and L. Pan. 2025. The Impact of Al-Assisted Pair
Programming. International Journal of STEM Education 12 (2025).

Yuxiang Hou, Siddharth Bhatt, Jiawen Zang, Yash Agarwal, Sida Wu, and
Sida Peng. 2024. The Effects of Generative Al on High Skilled Work: Evi-
dence from Three Field Experiments with Software Developers. arXiv preprint
arXiv:2410.12944 (2024).

Slava Kalyuga, Paul Ayres, Paul Chandler, and John Sweller. 2003. The Expertise
Reversal Effect. Educational Psychologist 38, 1 (2003), 23-31.

Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the Effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems (2023), 1-23.
Kenneth R. Koedinger, Albert T. Corbett, and Charles Perfetti. 2012. The
Knowledge-Learning-Instruction Framework: Bridging the Science-Practice
Chasm to Enhance Robust Student Learning. Cognitive Science 36, 5 (2012),
757-798.

B. Ma, H. Li, G. Li, L. Chen, C. Tang, Y. Xie, C. Gu, A. Shimada, and S. Konomi.
2025. Scaffolding Metacognition in Programming Education. arXiv preprint
arXiv:2511.04144 (2025).

Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2024. Read-
ing Between the Lines: Modeling User Behavior and Costs in Al-Assisted Pro-
gramming. arXiv preprint arXiv:2210.14306 (2024).

Raja Parasuraman and Victor Riley. 1997. Humans and Automation: Use, Misuse,
Disuse, Abuse. Human Factors 39, 2 (1997), 230-253.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. 2023. The Impact
of Al on Developer Productivity: Evidence from GitHub Copilot. arXiv preprint
arXiv:2302.06590 (2023).

James Prather, Brett A. Becker, Michelle Craig, Paul Denny, Dastyni Loksa, and
Lauren Margulieux. 2024. The Widening Gap: The Effects of Al-Assisted Code
Generation on Novice and Expert Developers. Proceedings of the 55th ACM
Technical Symposium on Computer Science Education (2024), 142-148.

Zheyuan Shen, Nikolas Zolas, Samuel Assefa, Miranda Bogen, and Noam Slonim.
2026. How AI Impacts Skill Formation. arXiv preprint arXiv:2601.20245 (2026).
M. L H. Shihab, C. Hundhausen, A. Tariq, S. Haque, Y. Qiao, and B. Mulanda.
2025. The Effects of GitHub Copilot on Computing Students. In ICER.

TUM Applied Education Technologies. 2025. Less Stress, Better Scores, Same
Learning. Computers and Education: Artificial Intelligence (2025).

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs.
Experience: Evaluating the Usability of Code Generation Tools Powered by Large
Language Models. Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems (2022), 1-7.

M. Vukovic, R. Pan, TK. Ho, R. Krishna, R. Pavuluri, and M. Merler. 2026. Usage,
Effects and Requirements for AI Coding Assistants in the Enterprise. In LLM4Code
Workshop, ICSE.

Celina Weber, Linwei Fang, David Broneske, and Gunter Saake. 2025. The Impact
of Al Tools on Software Engineering Tasks. arXiv preprint arXiv:2507.09089
(2025).

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928



	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Model Overview
	2.2 Skill Dimensions
	2.3 Task-Driven Learning Dynamics
	2.4 Experimental Design

	3 Results
	3.1 Overall Skill Formation
	3.2 Dimension-Specific Effects
	3.3 The Productivity–Skill Dissociation
	3.4 Dependency Index
	3.5 Sensitivity Analysis: The Crossover Threshold
	3.6 Effect Size Summary
	3.7 Robustness Analysis

	4 Discussion
	4.1 The Skill Formation Paradox
	4.2 Scaffolding as a Solution
	4.3 The Crossover Threshold
	4.4 Limitations
	4.5 Empirical Validation

	5 Conclusion
	References

