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The Skill Formation Paradox: How AI Coding Tools Boost
Productivity While Impeding Novice Developer Learning

Anonymous Author(s)
ABSTRACT
AI coding assistants provide substantial productivity gains to novice
software developers, yet their impact on underlying skill forma-
tion remains an open question with significant implications for
the software engineering workforce. We present a computational
cognitive model that simulates how novice developers’ skills evolve
over a 12-month period under three AI assistance regimes: no AI
(control), unrestricted AI with passive acceptance behavior, and AI
with scaffolded engagement requirements. The model operational-
izes six skill dimensions—syntactic fluency, algorithmic reasoning,
debugging, code comprehension, architectural judgment, and au-
tonomous learning—and is grounded in established theories of
retrieval-based strengthening, desirable difficulty, and skill com-
pilation from cognitive science. Our simulation of 240 developers
(80 per condition) over 252 working days reveals a skill forma-
tion paradox: unrestricted AI use produces a large negative effect
on skill development (Cohen’s 𝑑 = −0.97), with the strongest im-
pairment in highly automatable skills such as syntactic fluency
(𝑑 = −4.79), while scaffolded engagement nearly eliminates this
deficit (𝑑 = +0.10 overall). Sensitivity analysis identifies a criti-
cal crossover threshold at processing depth 0.75, below which AI
assistance harms skill formation and above which it becomes ben-
eficial. We further document a productivity–skill dissociation in
which unrestricted AI users appear more productive (3.69 vs. 3.21
tasks/day) yet possess weaker underlying skills (0.56 vs. 0.64 on
tool-removed assessments), creating a dependency trap invisible
under continued AI access. Bootstrap confidence intervals over
50 independent seeds confirm the robustness of these effects (un-
restricted 𝑑 = −1.12 [−1.37, −0.89]; scaffolded 𝑑 = +0.08 [−0.36,
+0.38]), and dimension-specific crossover analysis reveals that syn-
tactic fluency and autonomous learning never reach a break-even
threshold, while algorithmic reasoning crosses as early as 𝜙 = 0.44.
These findings generate testable predictions for empirical studies
and provide actionable design guidance for AI coding tools that
preserve novice learning.

CCS CONCEPTS
• Social and professional topics → Computing education;
• Computing methodologies→Modeling and simulation; •
Software and its engineering→ Software development techniques.
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1 INTRODUCTION
The rapid adoption of AI coding assistants—such as GitHub Copi-
lot, ChatGPT, and Claude—has transformed software development
workflows. Empirical evidence demonstrates that these tools yield
substantial productivity gains, particularly for less experienced
developers [9, 16, 18]. Shen et al. [18] document that junior de-
velopers experience disproportionately large speed improvements
when using AI assistance, a finding consistent with earlier con-
trolled studies [16].

However, productivity and skill are distinct constructs. A novice
developer who completes tasks faster with AI assistance is not nec-
essarily learning at the same rate as one who struggles through
tasks independently. Shen et al. [18] explicitly identify this gap,
noting that “the effect of these tools on the skill formation of this
subgroup remains unknown.” This open question has profound
implications: if AI tools accelerate task completion while retarding
skill acquisition, the software industry faces a growing cohort of
developers who are productive only with AI scaffolding and increas-
ingly dependent on tools they cannot fully evaluate or override.

The concern is grounded in well-established cognitive science
principles. Retrieval-based strengthening theory [5] holds that skills
consolidate through active recall and application; AI tools that pro-
vide ready-made solutions may bypass this retrieval process. The
desirable difficulty framework [4] demonstrates that moderate chal-
lenge during practice enhances long-term retention, even at the
cost of immediate performance—precisely the trade-off that AI as-
sistance reconfigures. Skill compilation theory from the ACT-R
architecture [1] posits that declarative knowledge becomes pro-
cedural through practice; if AI handles the procedural step, the
compilation process is interrupted.

This paper addresses the open problem through a computational
cognitive model that simulates multi-dimensional skill formation
under different AI assistance regimes. Our contributions are:

(1) A formal model of novice skill formation that operational-
izes six programming skill dimensions and captures the
interaction between AI assistance intensity, cognitive pro-
cessing depth, and learning dynamics.

(2) Quantitative predictions from a simulated three-arm ran-
domized trial (no AI, unrestricted AI, scaffolded AI) with
240 developers over 12 months, yielding effect sizes, depen-
dency trajectories, and sensitivity analyses.
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(3) Identification of a skill formation paradox—unrestricted
AI boosts productivity while significantly impairing skill
development—and a crossover threshold in processing depth
that determines whether AI is net-positive or net-negative
for learning.

(4) Actionable design implications for AI coding tools and edu-
cational interventions that preserve novice learning.

1.1 Related Work
AI Tools and Developer Productivity. Multiple studies establish

that AI coding assistants increase developer throughput. Peng et
al. [16] report a 55.8% faster task completion rate with GitHub
Copilot in a controlled experiment. Hou et al. [9] find productivity
gains across three field experiments, with larger effects for less
experienced developers. Shen et al. [18] provide a comprehensive
analysis showing that junior developers benefit disproportionately,
but explicitly flag skill formation as an unresolved question. How-
ever, the productivity narrative is not uniform: Becker et al. [3]
find that AI tools actually increased task completion time by 19%
for experienced open-source developers, suggesting that productiv-
ity effects depend critically on experience level and task context.
Vukovic et al. [22] report that enterprise developers perceive 12–
25% productivity gains, with 33% of code being AI-generated, but
note substantial variation across individuals and task types.

AI and Learning in Educational Contexts. Bastani et al. [2] demon-
strate that access to GPT-4 in a mathematics tutoring context harms
learning outcomes, providing direct evidence that AI assistance
can impede skill acquisition. Kazemitabaar et al. [11] study novice
programmers using AI code generators and find mixed effects on
learning, with benefits dependent on how students engage with the
generated code. Denny et al. [7] survey the landscape of computing
education in the generative AI era, identifying the need for ped-
agogical frameworks that leverage AI while preserving learning.
Prather et al. [17] document a widening gap between novice and
expert developers when AI assistance is available, raising concerns
about differential skill development. Shihab et al. [19] find that
GitHub Copilot accelerates student task completion by 35% but
raise concerns about reduced code comprehension. A three-arm
RCT at TUM [20] comparing scaffolded AI (Iris) versus ChatGPT
versus no-AI control (𝑛 = 275) finds that both AI conditions boost
exam performance but produce no learning gain on transfer tasks—a
dissociation directly consistent with our model’s predictions. Fan et
al. [8] report that AI pair programming produces a moderate moti-
vation boost (𝑑 = 0.35) and performance advantage in a 234-student
study, but do not measure long-term skill retention. Ma et al. [13]
document metacognitive laziness with 91.7% AI adoption among
programming students, finding that scaffolding interventions can
partially mitigate passive acceptance behavior.

Cognitive Foundations. The desirable difficulty framework [4]
and retrieval practice research [5] provide the theoretical basis
for predicting that reducing task difficulty through AI assistance
may impair long-term learning. The expertise reversal effect [10]
suggests that scaffolding beneficial for novices may become coun-
terproductive as expertise develops. Anderson’s ACT-R theory [1]

models how procedural skills are acquired through practice, offer-
ing a formal framework for reasoning about how AI intervention
in the practice process affects skill compilation. The Knowledge-
Learning-Instruction framework [12] provides additional theoreti-
cal grounding for understanding how instructional interventions
interact with learning processes.

Human–AI Interaction in Programming. Vaithilingam et al. [21]
evaluate the usability of AI code generation tools and find that
developers often accept suggestions without deep understanding.
Mozannar et al. [14] model user behavior during AI-assisted pro-
gramming, characterizing the spectrum from passive acceptance to
active engagement. Parasuraman and Riley [15] provide the founda-
tional framework on automation use, misuse, and skill degradation—
the “automation complacency” phenomenon that may manifest in
AI-assisted coding. Weber et al. [23] and Cui et al. [6] examine the
broader impacts of AI tools on software engineering tasks and help-
seeking behavior, respectively, contributing to our understanding
of how AI tools alter the learning environment.

Gap Addressed. While prior work establishes productivity ef-
fects and raises learning concerns, no existing study provides a
formal model that (a) decomposes programming skill into distinct
dimensions, (b) models the interaction between AI assistance in-
tensity and cognitive engagement, and (c) generates quantitative
predictions for longitudinal skill trajectories under different AI use
regimes. Our computational approach fills this gap and provides a
bridge between cognitive theory and empirical study design.

2 METHODS
2.1 Model Overview
We develop a computational cognitive model of skill formation that
simulates how novice developers’ programming abilities evolve
over time under different AI assistance conditions. The model repre-
sents each developer as a vector of skill levels across six dimensions,
updated daily through task-driven learning dynamics. Three experi-
mental conditions are simulated:Control (no AI),Unrestricted AI
(full AI access with passive acceptance behavior), and Scaffolded
AI (AI access with mandatory engagement: developers must read,
modify, and explain AI-generated code before proceeding). Figure 1
provides a visual overview of the computational model architecture
and the interactions between its components.

2.2 Skill Dimensions
Programming competence is operationalized as a six-dimensional
skill vector s ∈ [0, 1]6:

(1) Syntactic fluency: ability to write correct code from spec-
ifications without reference materials.

(2) Algorithmic reasoning: capacity to solve novel computa-
tional problems.

(3) Debugging: skill at locating and fixing defects in unfamiliar
code.

(4) Code comprehension: ability to read, understand, and
predict the behavior of code.

(5) Architectural judgment: capacity to evaluate and design
system-level structures.

2
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Figure 1: Computational model architecture for skill forma-
tion under AI assistance. The model tracks six skill dimen-
sions updated through task-driven learning dynamics, with
AI modulating effective difficulty and cognitive processing
depth across three experimental conditions.

(6) Autonomous learning: meta-skill of learning new frame-
works and tools independently.

Each dimension has a corresponding AI automation weight 𝑤𝑖 ∈
[0, 1] reflecting how effectively current AI tools can assist with that
skill type. We set 𝑤 = (0.80, 0.50, 0.35, 0.25, 0.15, 0.10), reflecting
the observation that AI tools are most effective at syntax-level
assistance and least effective at architectural and meta-cognitive
support.

2.3 Task-Driven Learning Dynamics
Each simulated working day, a developer encounters 𝑇 = 5 coding
tasks. Each task activates 1–3 skill dimensions (randomly sampled
with probabilities 0.4, 0.4, 0.2) and has a difficulty 𝛿 ∼ N(0.45, 0.152)
clipped to [0.05, 0.95].

Success Probability. The probability of successfully completing a
task component in dimension 𝑖 is modeled as a logistic function:

𝑃 (success) = 𝜎
(
𝑘 · (𝑠𝑖 − 𝛿eff)

)
(1)

where 𝜎 is the sigmoid function, 𝑘 = 8 controls steepness, 𝑠𝑖 is cur-
rent skill in dimension 𝑖 , and 𝛿eff is the effective difficulty (reduced
by AI in treatment conditions).

AI Modulation. In the Unrestricted AI condition, AI reduces
effective difficulty by factor (1− 0.55 ·𝑤𝑖 ) and cognitive processing
depth to 0.15 + 0.85 · (1 − 𝑤𝑖 ). In the Scaffolded AI condition,
difficulty reduction is halved and processing depth is maintained
at 0.70 + 0.30 · (1 − 0.3𝑤𝑖 ).

Learning Signal. The learning signal from each task attempt
integrates three factors:

ℓ = 𝐷 (𝛿, 𝑠𝑖 ) · 𝐹 (success, 𝛿 − 𝑠𝑖 ) · 𝜙 (2)

where 𝐷 captures desirable difficulty (a Gaussian centered at gap
= 0.10, reflecting optimal learning when tasks are slightly above
current skill), 𝐹 is a success/failure modulator (successful attempts
yield factor 0.8; near-miss failures yield 0.4; distant failures yield
0.1), and 𝜙 is the processing depth.

Table 1: Overall skill trajectories by condition. All values are
mean skill levels on tool-removed assessments (scale 0–1).
Growth is the difference between final and initial assess-
ments.

Condition Initial Final Growth

Control (No AI) 0.239 0.639 +0.400
Unrestricted AI 0.229 0.564 +0.334
Scaffolded AI 0.234 0.644 +0.409

Skill Update with Transfer. Raw learning signals are transformed
through a transfer matrix T that captures cross-dimensional learn-
ing transfer (e.g., improvement in algorithmic reasoning partially
transfers to debugging). Skills update as:

s← s + 𝛼 · (ℓ · T) − 𝛽 ·m ⊙ s (3)

where 𝛼 = 0.006 is the learning rate, 𝛽 = 0.0005 is the forgetting
rate, and m is a binary mask indicating dimensions not exercised
in the current task (implementing use-it-or-lose-it decay).

2.4 Experimental Design
We simulate a three-arm parallel design with 𝑛 = 80 developers per
condition, over 𝐷 = 252 working days (approximately 12 calendar
months). Initial skill levels are sampled fromN(0.20, 0.052) clipped
to [0.05, 1.0], representing novice developers with 0–2 years of
experience.

Assessment Protocol. Tool-removed skill assessments are con-
ducted monthly (every 21 working days), yielding 12 assessment
time points. Assessment scores equal the true skill level plus Gauss-
ian noise N(0, 0.032), simulating measurement error.

Outcome Measures. Primary outcomes include: (1) Skill growth:
change in tool-removed skill level from first to last assessment;
(2) Effect sizes: Cohen’s 𝑑 between conditions at final assessment;
(3) Dependency index: DI = (AI-assisted − unassisted)/AI-assisted
performance; (4) Productivity: tasks completed per day with and
without AI. Statistical significance is evaluated via permutation
tests with 5,000 permutations.

Sensitivity Analysis. We systematically vary the processing depth
parameter 𝜙 from 0.05 to 0.95 (in steps of 0.05) to identify the
crossover threshold at which AI assistance transitions from net-
negative to net-positive for skill formation. This analysis uses 40
developers per condition to maintain computational efficiency.

3 RESULTS
3.1 Overall Skill Formation
Table 1 summarizes skill trajectories across conditions. All three
groups begin with comparable skill levels (≈ 0.23). After 12 months,
the Control group reaches a mean skill of 0.639, the Unrestricted AI
group reaches 0.564, and the Scaffolded AI group reaches 0.644. The
Unrestricted AI condition produces 16.4% less skill growth than
Control, while Scaffolded AI produces growth nearly identical to
Control.
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The overall Cohen’s 𝑑 between Unrestricted AI and Control is
−0.97 (large negative effect), indicating that unrestricted AI use
significantly impairs skill development. The Scaffolded AI vs. Con-
trol effect size is 𝑑 = +0.10 (negligible), indicating that scaffolded
engagement preserves nearly all of the learning benefit of unaided
practice.

3.2 Dimension-Specific Effects
Figure 2 displays skill trajectories for each of the six dimensions
across all three conditions. The magnitude of AI’s negative effect is
strongly correlated with the dimension’s automation weight.

Table 2 reports the dimension-specific final skill levels and ef-
fect sizes. Syntactic fluency shows the largest impairment under
unrestricted AI (𝑑 = −4.79, 𝑝 < 0.001), followed by algorithmic
reasoning (𝑑 = −1.97, 𝑝 < 0.001). Architectural judgment shows
the smallest effect (𝑑 = −0.27, 𝑝 = 0.096), consistent with AI tools
providing less assistance for high-level design decisions. Under Scaf-
folded AI, most dimensions show small or non-significant effects
relative to Control, with algorithmic reasoning showing a positive
effect (𝑑 = +0.54, 𝑝 < 0.001) and autonomous learning showing a
positive effect (𝑑 = +0.57, 𝑝 < 0.001), suggesting that scaffolded AI
engagement may enhance certain reasoning and meta-cognitive
skills.

Figure 3 visualizes the dimension-specific results as a heatmap,
clearly showing the gradient of AI impact across the automation
spectrum. The Spearman correlation between automationweight𝑤𝑖

and Unrestricted AI effect size is 𝜌 = −0.94 (𝑝 = 0.005), confirming
that AI most impairs skills in dimensions where it provides the
most assistance.

3.3 The Productivity–Skill Dissociation
Figure 4 illustrates the central paradox: unrestricted AI users appear
more productive when measured with AI access (3.69 tasks/day vs.
3.21 for Control) but possessweaker underlying skills when assessed
without AI (mean skill 0.564 vs. 0.639).

This dissociation has practical implications: organizations evalu-
ating developer performance based on AI-assisted output metrics
will systematically overestimate the capability of developers who
rely heavily on AI tools. The gap between measured productivity
and genuine skill represents a hidden dependency that only becomes
visible when AI access is removed or when developers face novel
problems outside AI’s competence.

3.4 Dependency Index
Figure 5 tracks the Dependency Index (DI) over time. Both AI condi-
tions begin with high DI values (≈ 0.62) due to novice-level starting
skills. As skills develop, DI decreases—but more slowly for Unre-
stricted AI users. At month 12, the Unrestricted AI group retains
a DI of 0.236 compared to 0.182 for Scaffolded AI, indicating that
unrestricted users remain more dependent on AI tools despite 12
months of practice.

3.5 Sensitivity Analysis: The Crossover
Threshold

Figure 6 presents the sensitivity analysis varying processing depth
𝜙 from 0.05 to 0.95. Below 𝜙 ≈ 0.75, AI assistance produces a net

negative effect on skill formation. Above this threshold, the learning
benefit of reduced difficulty and increased success rate outweighs
the cost of reduced cognitive effort, and AI becomes net-positive.

This crossover threshold at 𝜙 = 0.75 has direct design implica-
tions: AI tools that ensure developers engage with at least 75% of
the cognitive depth of unaided work will produce net-positive skill
outcomes. The default Unrestricted AI processing depth of 0.15 falls
far below this threshold, explaining the large negative skill effect.
The Scaffolded AI condition’s processing depth of 0.70 approaches
but does not quite reach the threshold, explaining its near-neutral
overall effect.

3.6 Effect Size Summary
Figure 7 displays Cohen’s 𝑑 effect sizes for all six dimensions under
both AI conditions compared to Control. The key insight is that
the pattern of effects is qualitatively different between conditions:
Unrestricted AI shows uniformly negative effects that scale with
automation weight, while Scaffolded AI shows a mixed pattern
with small negative effects on some dimensions and small positive
effects on others.

3.7 Robustness Analysis
To assess the stability of our findings, we conduct three additional
analyses: bootstrap replication, dimension-specific crossover analy-
sis, and multi-parameter sensitivity.

Bootstrap Confidence Intervals. We replicate the full simulation
across 50 independent random seeds (each with 𝑛 = 40 develop-
ers per condition) and compute 95% confidence intervals for all
effect sizes. Figure 8 displays the resulting forest plot. The over-
all unrestricted-vs-control effect size is 𝑑 = −1.12 [95% CI: −1.37,
−0.89], confirming a robust large negative effect. The scaffolded-
vs-control effect is 𝑑 = +0.08 [−0.36, +0.38], with the confidence
interval spanning zero, confirming that scaffolded engagement pro-
duces no reliable skill impairment. At the dimension level, syntactic
fluency shows the most robust negative effect under unrestricted
AI (𝑑 = −4.75 [−5.98, −3.90]), while architectural judgment and
autonomous learning show confidence intervals that include zero,
indicating less reliable effects for low-automation dimensions.

Dimension-Specific Crossover Thresholds. While the overall crossover
threshold is 𝜙 ≈ 0.75, individual skill dimensions exhibit markedly
different thresholds. Algorithmic reasoning crosses earliest at 𝜙 =

0.44, followed by debugging (𝜙 = 0.53), code comprehension (𝜙 =

0.65), and architectural judgment (𝜙 = 0.78). Critically, syntactic
fluency and autonomous learning never reach a positive crossover
within the tested range (𝜙 ∈ [0.05, 0.95]): for these dimensions, AI
assistance produces a negative skill delta at every processing depth
tested, though the deficit shrinks monotonically toward zero. This
finding suggests that certain skill types are inherently vulnerable to
AI-assisted atrophy regardless of engagement depth, a result with
direct implications for tool design.

Multi-Parameter Sensitivity. Figure 9 presents a heatmap of the
skill delta (AI minus Control) across a 9×7 grid of processing depth
(𝜙 ∈ [0.1, 0.9]) and AI difficulty reduction (𝑟 ∈ [0.2, 0.8]). The
transition from negative to positive delta traces a diagonal bound-
ary: higher difficulty reduction requires correspondingly higher
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Figure 2: Skill trajectories across six programming dimensions over 12 months. Lines show group means; shaded regions show
95% confidence intervals. The Unrestricted AI condition (red) shows progressively diverging trajectories from Control (green),
with the largest gaps in highly automatable dimensions (syntactic fluency, algorithmic reasoning). The Scaffolded AI condition
(blue) closely tracks Control across all dimensions.

Table 2: Dimension-specific final skill levels and effect sizes. Cohen’s 𝑑 compares each AI condition against Control; negative
values indicate AI-induced skill impairment. 𝑝-values from permutation tests (5,000 permutations). Dimensions ordered by AI
automation weight (descending).

AI Weight Final Skill (Mean) Cohen’s 𝑑 vs. Control

Dimension 𝑤𝑖 Control Unrest. AI Scaff. AI Unrest. (𝑝) Scaff. (𝑝)
Syntactic Fluency 0.80 0.653 0.388 0.652 −4.79 (< .001) −0.01 (0.948)
Algorithmic Reasoning 0.50 0.643 0.573 0.661 −1.97 (< .001) +0.54 (< .001)
Debugging 0.35 0.659 0.611 0.647 −1.32 (< .001) −0.34 (0.031)
Code Comprehension 0.25 0.663 0.624 0.654 −1.14 (< .001) −0.28 (0.075)
Architectural Judgment 0.15 0.655 0.645 0.661 −0.27 (0.096) +0.16 (0.341)
Autonomous Learning 0.10 0.560 0.541 0.587 −0.45 (0.005) +0.57 (< .001)

processing depth to achieve net-positive outcomes. At the default
unrestricted settings (𝜙 = 0.15, 𝑟 = 0.55), the skill deficit is ap-
proximately −0.08; achieving net-positive skill formation requires
either 𝜙 > 0.80 at 𝑟 = 0.55 or reducing 𝑟 below 0.3 at 𝜙 = 0.70.
Learning rate and forgetting rate sweeps confirm that the qualita-
tive pattern—unrestricted AI harms skill formation, scaffolded AI
preserves it—holds across all tested parameter combinations.

4 DISCUSSION
4.1 The Skill Formation Paradox
Our model predicts a fundamental tension between short-term
productivity and long-term skill development. Unrestricted AI use—
the default mode in which most novice developers interact with
AI tools—produces a large negative effect on skill formation (𝑑 =

−0.97) while simultaneously boosting observable productivity. This
productivity–skill dissociation creates a systemic risk: organizations
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Figure 3: Heatmap of final skill levels by condition and di-
mension. Warmer colors indicate higher skill. The Unre-
stricted AI condition shows notably lower skill in the left
columns (high-automation dimensions) compared to Control
and Scaffolded AI.
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Figure 4: The productivity–skill dissociation. (a) Observed
productivity with AI access: AI users complete more tasks
daily. (b) Underlying skill on tool-removed assessments: AI
users develop weaker skills over time. This dissociation cre-
ates a dependency trap that is invisible under continued AI
access.
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Figure 5: Dependency Index (DI) over 12 months. Higher
values indicate greater reliance on AI tools. Unrestricted AI
users reduce dependency more slowly than Scaffolded AI
users, converging to a higher steady-state dependency level.

optimizing for measurable output will inadvertently produce devel-
opers who cannot function without AI scaffolding.
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Figure 6: Sensitivity analysis. (a) Final skill levels as a func-
tion of cognitive processing depth during AI-assisted work.
(b) Skill delta (AI minus Control): the crossover from nega-
tive to positive occurs at processing depth ≈ 0.75. Below this
threshold, AI harms skill formation; above it, AI helps.
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Figure 7: Cohen’s 𝑑 effect sizes by dimension. Unrestricted AI
(red) shows consistently negative effects, largest for highly
automatable skills. Scaffolded AI (blue) shows near-zero ef-
fects across most dimensions, with modest positive effects
for algorithmic reasoning and autonomous learning.
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Figure 8: Forest plot of Cohen’s 𝑑 effect sizes with 95% boot-
strap confidence intervals (50 seeds). Unrestricted AI (red)
shows consistently negative effects across dimensions, with
the most robust impairment in syntactic fluency. Scaffolded
AI (blue) shows confidence intervals overlapping zero for all
dimensions.

Themagnitude of the effect is dimension-dependent and strongly
correlated with the degree of AI automation. Syntactic fluency—
the skill most readily automated by current AI tools—shows the
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Figure 9: Multi-parameter sensitivity heatmap. Skill delta (AI
minus Control) as a function of processing depth (𝜙 , 𝑦-axis)
and AI difficulty reduction (𝑟 , 𝑥-axis). Blue regions indicate
net skill harm; red regions indicate net skill benefit. The
white contour marks the zero-crossing boundary. Default
unrestricted AI parameters (𝜙 = 0.15, 𝑟 = 0.55) fall deep in the
harm zone.

largest impairment (𝑑 = −4.79). While one might argue that syntax
skills become less important when AI handles them, this argument
overlooks two concerns. First, syntactic fluency is foundational;
debugging, code review, and architectural reasoning all require
the ability to read and write code fluently. Second, AI tools will
not always be available, accurate, or applicable; developers with
atrophied fundamental skills face amplified failures when AI cannot
help.

4.2 Scaffolding as a Solution
The Scaffolded AI condition demonstrates that the negative skill
effect is not inherent to AI tool use but rather to themode of engage-
ment. When novices are required to actively process AI output—
reading, modifying, and explaining generated code before incor-
porating it—skill development proceeds at nearly the same rate as
unaided practice (𝑑 = +0.10). This finding aligns with prior work
on active learning and desirable difficulty [4] and suggests concrete
design interventions:

• Explain-before-accept: Require novices to articulate why
AI-generated code works before incorporating it.
• Modification prompts: Present AI suggestions in a form

that requires adaptation rather than verbatim acceptance.
• Interleaved practice: Periodically disable AI assistance to

force unscaffolded practice.
• Progressive withdrawal: Gradually reduce AI assistance

as skill levels increase, analogous to training wheels.

4.3 The Crossover Threshold
The sensitivity analysis identifies a processing depth threshold
of 𝜙 ≈ 0.75 at which AI transitions from skill-harming to skill-
enhancing. This has quantitative design implications: any AI in-
teraction protocol that maintains at least 75% of the cognitive en-
gagement of unaided work should produce net-positive learning
outcomes. Current AI tools that offer frictionless code completion
(estimated 𝜙 ≈ 0.15) are far below this threshold, while structured
engagement protocols can approach or exceed it.

4.4 Limitations
Our findings are based on a computational model, not empirical
data from human participants. The model makes assumptions about
cognitive architecture (learning rates, forgetting dynamics, transfer
structure) that, while grounded in established theory, may not pre-
cisely match real-world learning. Key limitations include: (1) The
model does not capture motivational factors—novices restricted
from AI tools may be demotivated, while those with AI may expe-
rience increased enjoyment. (2) The task environment is simplified;
real software development involves social interaction, code review,
and collaborative problem-solving that may modify learning dy-
namics. (3) The processing depth parameter, while theoretically
motivated, conflates multiple cognitive processes into a single scalar.
(4) AI tool capabilities evolve rapidly; the automation weights used
here reflect current-generation tools and may shift as AI improves.

These limitations are inherent to the computational modeling
approach but are offset by its strengths: the ability to generate
precise, testable predictions; systematic exploration of parameter
space; and low cost relative to longitudinal human studies.

4.5 Empirical Validation
Our model generates several testable predictions for empirical stud-
ies:

(1) Dimension-specificity: TheAI-induced skill deficit should
be largest for syntactic and algorithmic skills, smallest for
architectural and meta-cognitive skills.

(2) Engagement moderation: Active engagement protocols
should substantially reduce or eliminate the skill deficit.

(3) Dependency trap: Tool-removed assessments should re-
veal skill gaps invisible in AI-assisted performance metrics.

(4) Threshold effect: Interventions increasing processing depth
above ∼0.75 should flip the AI effect from negative to posi-
tive.

Emerging empirical evidence is qualitatively consistent with
these predictions. Shen et al. [18] report a 17% skill reduction
(𝑑 = 0.738) in a 52-participant RCT with an asyncio program-
ming library—the same direction and approximate magnitude as
our model’s prediction of a 16.4% growth deficit (𝑑 = −0.97). The
TUM three-arm trial [20] finds performance boosts with no learning
gain, directly paralleling our predicted productivity–skill dissocia-
tion. Becker et al. [3] find that experienced developers are actually
slowed by AI tools, consistent with our model’s prediction that the
productivity benefit is largest for novices (where AI bridges the
largest skill gap) and may invert for experts.

We recommend a Randomized Longitudinal Skill Assessment
(RLSA) design—a 12-month, three-arm trial with monthly tool-
removed assessments across all six skill dimensions—as the empiri-
cal study most directly suited to testing these predictions. Figure 10
illustrates the proposed RLSA framework, showing the three-arm
randomized design and assessment structure.

5 CONCLUSION
We have presented a computational cognitive model that addresses
the open question of how AI coding tools affect novice developer
skill formation. Our simulation of 240 developers over 12 months
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Figure 10: The Randomized Longitudinal Skill Assessment
(RLSA) framework. A three-arm parallel design with Con-
trol (no AI), Unrestricted AI, and Scaffolded AI conditions,
incorporating monthly tool-removed assessments across six
skill dimensions over 12 months.

reveals a skill formation paradox: unrestricted AI use boosts produc-
tivity while significantly impeding underlying skill development
(𝑑 = −0.97; bootstrap 95% CI: [−1.37, −0.89]), with the strongest
effects in highly automatable skill dimensions. Critically, scaffolded
engagement—requiring active processing of AI output—nearly elim-
inates this deficit (𝑑 = +0.10), and sensitivity analysis identifies a
processing depth threshold at 𝜙 ≈ 0.75 that separates skill-harming
from skill-enhancing AI use.

These findings have immediate practical implications. For tool
designers: incorporate scaffolding features that promote active
engagement, such as explain-before-accept prompts and modifi-
cation requirements, particularly for users identified as novices.
For engineering managers: supplement AI-assisted productivity
metrics with periodic tool-removed skill assessments to detect hid-
den dependency. For educators: integrate AI tools into curricula
with explicit scaffolding protocols rather than unrestricted access,
and teach students to evaluate rather than merely accept AI out-
put. For researchers: prioritize empirical studies that disentangle
productivity from skill, measure multiple skill dimensions, and test
engagement-mode interventions.

The skill formation paradox is not an argument against AI cod-
ing tools—it is an argument for designing them thoughtfully, with
attention to the cognitive processes that drive genuine skill devel-
opment. The gap between productivity and competence is invisible
when AI access continues, making proactive assessment and delib-
erate practice design essential for the next generation of software
developers.
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