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ABSTRACT

Riemannian AmbientFlow augments the AmbientFlow variational
lower bound with a geometric regularization term—the squared
Frobenius norm of the Jacobian of the learned diffeomorphism at
the origin—to encourage low-dimensional manifold structure in
generative models trained on corrupted data. A theoretical recover-
ability result holds under feasibility assumptions: the existence of
parameters achieving exact data distribution matching, posterior
matching, and geometric constraint satisfaction. However, the opti-
mization landscape is nonconvex, and it remains an open question
which local minima are reached and whether feasibility holds at
those minima. We investigate this open problem through systematic
computational experiments on three synthetic manifold-learning
problems (circle in R?, sphere in R3, helix in R?) using two model
architectures—a simple affine-plus-tanh parameterization (9-19 pa-
rameters) and a multi-layer perceptron diffeomorphism (1186-1251
parameters)—across regularization strengths A € [0, 2]. Through
multi-start optimization, oracle feasibility analysis, convergence
diagnostics, sensitivity studies, Hessian spectral analysis, and pull-
back metric comparison, we characterize the landscape structure
and assess feasibility at converged solutions. Our oracle feasibility
analysis confirms that both parameterizations can approximate the
ground-truth embedding (F1 > 0.9), establishing that infeasibility at
ELBO local minima reflects landscape properties rather than capac-
ity limitations alone. Our results reveal that (i) all converged critical
points show strictly positive directional curvature; (ii) increasing A
monotonically decreases the Jacobian norm but introduces a fea-
sibility trade-off where data-matching degrades; (iii) the pullback
metric at learned solutions substantially underestimates the true
metric; and (iv) feasibility scores exhibit non-monotonic behavior
in A, with 95% bootstrap confidence intervals quantifying statis-
tical uncertainty. These findings provide a systematic empirical
investigation of the landscape-feasibility trade-off in Riemannian
AmbientFlow and suggest that the feasibility assumptions of the
recoverability theorem are not satisfied at local minima found by
gradient-based optimization in the tested configurations, even when
the model class has sufficient oracle capacity.

1 INTRODUCTION

Generative modeling on low-dimensional manifolds embedded in
high-dimensional ambient spaces is a fundamental challenge in
machine learning. When observations are corrupted by noise, the
problem becomes even more difficult: the generative model must
simultaneously recover the latent manifold structure and learn to
generate new data consistent with the ground-truth distribution.
AmbientFlow [16] introduced a variational framework for this
setting, training normalizing flows [26, 27] on noisy observations
via a variational lower bound. Kelkar et al. [18] extended this to in-
vertible generative models for incomplete measurements. Diepeveen

et al. [8] recently proposed Riemannian AmbientFlow, which aug-
ments this objective with a geometric regularization term derived
from pullback Riemannian geometry. The updated objective takes
the form:

L(0,9) = Lar(60,¢) + - 15, (017, 1)

where LaF is the (negative) AmbientFlow ELBO, f; : R¢ — RP
is the learned diffeomorphism mapping the latent space to the
ambient space, J, (0) is its Jacobian evaluated at the origin, and
A > 0 controls the regularization strength.

The Frobenius norm penalty || J, (0)|I% = Tr(Gy(0)), where
Go(2) = J,(2) T Jf, (2) is the pullback metric, encourages the learned
map to preserve low-dimensional structure by penalizing excessive
stretching at the origin.

Diepeveen et al. 8] prove a recoverability theorem under three
feasibility assumptions:

(F1) There exist parameters (0%, ¢*) such that the learned data

distribution py- equals the ground-truth data distribution
Pdata-

(F2) The learned variational posterior gy« (z|y) equals the true

posterior pg+ (z|y).

(F3) The geometric constraint || /7, (0)||12D < C is satisfied for

some constant C.

However, as the authors note, the optimization problem (1) is
nonconvex, and it is not guaranteed which local minimum gradient-
based training will reach, nor whether the feasibility assumptions
hold at the converged solution. This constitutes an open problem at
the intersection of nonconvex optimization, Riemannian geometry,
and variational inference.

In this paper, we provide a systematic computational investiga-
tion of this open problem on controlled synthetic problems. We
design experiments with known ground-truth manifolds and cor-
ruption models, enabling exact assessment of all three feasibility
conditions at converged solutions. Critically, we introduce an ora-
cle feasibility experiment that separates model capacity limitations
from optimization landscape effects by fitting the parameterization
directly to the ground-truth embedding (bypassing the ELBO ob-
jective). Our oracle analysis confirms that both a simple and an
MLP parameterization have sufficient capacity to represent the true
map (F1 > 0.9), allowing us to conclude that infeasibility at ELBO
local minima is primarily a property of the landscape. We further
provide convergence diagnostics, sensitivity analyses across noise
levels and sample sizes, bootstrap confidence intervals, and a 2D
landscape cross-section visualization.

1.1 Related Work

Normalizing flows on manifolds. Standard normalizing flows [26,
27] learn invertible maps between a simple base distribution and a
complex target. When the target lives on a low-dimensional man-
ifold, approaches include neural ODEs on manifolds [5, 22], Rie-
mannian continuous normalizing flows [24], and homeomorphic
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VAEs [13]. AmbientFlow [16] works with corrupted ambient-space
observations, avoiding the need to explicitly parameterize the man-
ifold. Vérine et al. [28] analyze the expressivity limitations of bi-
Lipschitz normalizing flows, providing theoretical context for un-
derstanding capacity constraints in flow-based models.

Geometric methods in generative models. Diepeveen and Needell [10]

study manifold learning with normalizing flows from the perspec-
tive of regularity, expressivity, and iso-Riemannian geometry, pro-
viding a theoretical foundation for understanding when flow-based
models can faithfully capture manifold structure. Diepeveen et
al. [9] develop score-based pullback Riemannian geometry, extend-
ing the pullback metric framework beyond the deterministic setting.
Chen and Lipman [4] introduce flow matching on general geome-
tries, while de Kruiff et al. [7] study pullback flow matching on
data manifolds. De Bortoli et al. [6] and Huang et al. [17] develop
Riemannian score-based and diffusion models, respectively. These
works collectively establish the importance of Riemannian geome-
try in modern generative modeling.

Optimization landscapes in deep learning. The landscape of non-
convex objectives has been studied extensively. In certain matrix
problems, all local minima are global [3, 14]. Levin et al. [21] ana-
lyze the effect of smooth parameterizations on nonconvex optimiza-
tion landscapes, showing how the parameterization structure can
shape the critical point landscape. Ding et al. [11] provide sharp
global guarantees for nonconvex low-rank recovery, establishing
conditions under which gradient descent provably finds global
optima. For VAE-type objectives, posterior collapse represents a
known class of spurious local minima [19, 23]. Riemannian opti-
mization [1] provides tools for optimization on manifolds, but the
landscape of objectives mixing variational inference with geometric
regularization remains poorly understood.

Pullback geometry in generative models. The pullback metric
G(z) = Jr(2) T Jf(z) captures the Riemannian geometry induced by
a smooth map f : RY — RP [12, 20]. Arvanitidis et al. [2] study the
curvature of deep generative models through the lens of pullback
geometry. Diepeveen et al. [8] use this to regularize generative
models, penalizing Tr(G(0)) = || ]]c(0)||12D to encourage geometric
consistency with the intrinsic manifold dimension.

2 METHODS

2.1 Problem Setup

We study the objective (1) on three synthetic manifold-learning
problems with known ground truth:

(1) Circle in R? (d = 1, D = 2): The unit circle S! parameter-
ized by f*(z) = (cos z, sin z), with ground-truth geometric
constant C* = Tr(G*(0)) = 1.0.

(2) Sphere in R? (d = 2, D = 3): The unit sphere S? via inverse
stereographic projection f*(z1, z2) = |Z|++1 (221, 222, |z|? —
1), with C* = Tr(G*(0)) = 8.0.

(3) HelixinR> (d = 1,D = 3): Ahelix f*(t) = (cost,sint, t/27),
with C* = Tr(G*(0)) ~ 1.025.

For each problem, we generate n = 200 data points, corrupt them
with additive Gaussian noise (o = 0.1 unless otherwise specified),
and optimize (1) using L-BFGS-B [25]. The Monte Carlo samples

Anon.

used within the ELBO are computed with a fixed random seed per
evaluation, making the objective deterministic for given parameters.

2.2 Parameterizations

We employ two parameterizations of the diffeomorphism f; : R¢ —
RP.

Simple parameterization. The diffeomorphism is parameterized
as

fo(z) =Az+b+¢-tanh(Wz +¢), (2)

where A € RP*4 s initialized near-orthogonally, W € RP*4 cap-
tures nonlinear structure, b, c € RP are biases, and ¢ > 0 controls
the nonlinear perturbation strength. This yields 9 parameters (cir-
cle), 19 parameters (sphere), and 13 parameters (helix). The Jacobian
at the origin is:

J5,(0) = A+ ¢ - diag(sech?(c)) - W. (3)

MLP parameterization. To test whether increased model capacity
changes the landscape-feasibility trade-off, we also employ an MLP
diffeomorphism with 2 hidden layers of 32 units each and tanh
activations:

fo(z) = W3 tanh(Wa tanh(Wiz + b1) + b2) + b3, (4)

where Wy € R32%Xd W, e R32%32 W, ¢ RDX32 and b; are bi-
ases. This yields 1186 parameters (circle), 1251 parameters (sphere),
and 1219 parameters (helix)—a 60X-130X increase over the simple
model.

Variational posterior. For the simple model, the variational pos-
terior q4(z|y) is a diagonal Gaussian with amortized parameters:
u(y) = Vy + oo and logo(y) = Uy + up (linear encoder). For the
MLP model, we use a nonlinear encoder with one hidden layer of
32 units. We note that the linear encoder limits posterior matching
(F2) for nonlinear manifolds; the oracle experiment (Section 2.4)
isolates the decoder capacity question (F1, F3) from this confound.

2.3 Feasibility Score Design

We use the ground-truth geometric constant C* = Tr(G*(0)) as the
threshold for condition F3, rather than an arbitrary constant. The
three components are:

F1 = exp(—~MMD), (5)
F2 = exp(-PM), (6)
F3 = 1[[|J;, (0)[1} < C*1, 7)

where MMD is the maximum mean discrepancy [15] (bandwidth =
1.0), PM is the posterior mismatch (MSE between encoded means
and true latents), and C* is the ground-truth metric trace. We
present F1, F2, F3 as the primary feasibility metrics and define
the aggregate score as ¥ = F1-F2 - F3.

Using C* = Tr(G*(0)) ensures that F3 is meaningful: the geo-
metric penalty must not suppress the Jacobian norm below the
level required by the true manifold geometry. We note that the
MMD uses a fixed bandwidth of 1.0 throughout; this is a common
default but the MMD is sensitive to bandwidth selection [15], and
a multi-bandwidth or median heuristic approach would be more
robust. We leave this refinement to future work.
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2.4 Oracle Feasibility

A critical question is whether infeasibility at ELBO local minima re-
flects an intrinsic property of the optimization landscape or merely
insufficient model capacity. To disentangle these effects, we in-
troduce an oracle feasibility experiment that bypasses the ELBO
entirely.

For each parameterization (simple and MLP), we fit fp directly to
the ground-truth embedding f* by minimizing the reconstruction
error || fy(zi) — f*(z:)||? over a dense grid of latent points. We then
evaluate the feasibility diagnostics at the oracle solution:

e Oracle F1: exp(-MMD(fy(zi), f*(zi))) measures data dis-
tribution matching at the oracle.

e Oracle F3: 1[|| ], (0)||12c < C*] checks the geometric con-
straint.

If the oracle achieves high F1 and F3, then the model class can
represent a feasible solution, and any infeasibility observed during
ELBO optimization must be attributed to the landscape rather than
capacity.

2.5 Experimental Protocol

We conduct the following experiments:

Experiment 1: Multi-start landscape exploration. For each mani-
fold and each A € {0,0.01,0.05,0.1,0.5,1.0,2.0}, we run K = 15 in-
dependent optimizations from random initializations (200 L-BFGS-
B iterations each). At each converged solution, we evaluate the
objective value and the three feasibility diagnostics. We report
convergence status (gradient norm < 107°) for all runs.

Experiment 2: Parameter continuation. Starting from a single
random initialization at A = 0, we track the local minimum as A
increases from 0 to 2 in 30 steps, using the previous solution as
warm-start for each step.

Experiment 3: Hessian spectral analysis. At converged solutions
for each A € {0,0.1,0.5,1.0}, we compute 50 random directional
second derivatives o Ho via finite differences (step size h = 1074, 32
Monte Carlo samples with fixed seed for noise reduction). We report
these as directional curvature samples, noting that the minimum of
0T Ho over random unit vectors v provides an upper bound on the
minimum eigenvalue of H, not a direct estimate.

Experiment 4: Pullback geometry analysis. For converged solu-
tions at each A, we compute the pullback metric Gg(z) = Ji, (2) T]ﬁ) ()
at 40 random points and compare with the ground-truth metric
G*(2).

Experiment 5: Sensitivity analysis. We vary the noise level o €
{0.01,0.05,0.1,0.2,0.5} and the sample size n € {50, 100, 200, 500}
at fixed A = 0.1, running 10 starts for each configuration.

Experiment 6: Bootstrap confidence intervals. For each A, we com-
pute 95% bootstrap confidence intervals from 15 runs (B = 200
resamples) for the mean feasibility score. Figure 1 provides an
overview of the complete experimental framework and the rela-
tionships between its six experiments.
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Table 1: Oracle feasibility: fitting fy directly to * (bypassing
ELBO). Both parameterizations achieve F1 > 0.9 on all mani-
folds, confirming sufficient capacity. The sphere shows per-
sistent metric underestimation (trace 3.2-3.8 vs. 8.0) even at
oracle, indicating a geometry-specific limitation. C*: ground-
truth metric trace.

Manifold Model Params Flga F3gra  Tr(Gp) C*

Circle Simple 9 0.998 0.967 1.034 1.0

MLP 1186 0.957 0.986 1.014 1.0

Sphere Simple 19 0.909 1.000 3.764 8.0

P MLP 1251 0.917 1.000 3.208 8.0
Helix Simple 13 0.998 0.967 1.059 1.025
MLP 1219 0.952  0.860 1.176 1.025

3 RESULTS

3.1 Oracle Feasibility

Table 1 presents the oracle feasibility results. Both the simple and
MLP parameterizations achieve high oracle F1 scores across all
manifolds: simple model scores of 0.998, 0.909, and 0.998 on circle,
sphere, and helix respectively; MLP scores of 0.957, 0.917, and 0.952.
This confirms that both model classes have sufficient capacity to
approximate the ground-truth embedding.

The oracle F3 scores are also high (> 0.86), with the exception
that the sphere exhibits persistent metric underestimation: the
learned trace at oracle is 3.76 (simple) and 3.21 (MLP) compared to
the true value of 8.0. This indicates that the sphere’s high curvature
from stereographic projection poses a geometry-specific challenge
even when the ELBO landscape is removed.

The key implication is that infeasibility observed at ELBO local
minima (Section 3.4) cannot be attributed solely to model capacity,
since both parameterizations can represent near-feasible solutions.
Instead, the ELBO optimization landscape guides the optimizer to
infeasible basins.

3.2 Landscape Structure and Convergence

Figure 2 shows the objective value across A for each manifold. The
objective spread is largest at A = 0, reaching 1.84 for the circle
and 2.08 for the helix, indicating multiple distinct local minima in
the unregularized landscape. The sphere shows remarkably low
spread (< 0.28) at all A values, suggesting a simpler landscape for
higher-dimensional manifolds.

Figure 3 presents convergence diagnostics. Most optimization
runs (93% on average) terminate at the 200-iteration limit rather
than reaching the gradient tolerance of 107°. On the circle, 1-4 out
of 15 runs converged per A setting; on the sphere, 0-1; on the helix,
0-4. However, the final gradient norms are generally small (median
< 0.3), indicating that the solutions are near-stationary even when
the strict convergence criterion is not met. This justifies treating
the terminal solutions as approximate critical points.

Figure 4 demonstrates that the Jacobian penalty achieves its
intended effect: || Jz, (0) ||% decreases monotonically with A across
all manifolds. On the circle, the mean Jacobian norm drops from
0.41 (A = 0) to 0.21 (A = 2.0), a 49% reduction. On the sphere, from
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Figure 1: Experimental framework for investigating the optimization landscape and feasibility trade-off in Riemannian Ambi-
entFlow. The pipeline defines three synthetic manifold problems (circle, sphere, helix) with known ground truth, parameterizes
the diffeomorphism via simple (9-19 parameters) and MLP (1186-1251 parameters) models, optimizes the ELBO with geometric
penalty across seven regularization strengths (1 € {0,0.01,.. ., 2.0}) using multi-start L-BFGS-B, evaluates feasibility via three
diagnostics (distribution matching F1, posterior mismatch F2, geometric constraint F3), and analyzes the landscape through
Hessian spectral analysis, parameter continuation, pullback geometry comparison, sensitivity analysis, and bootstrap confi-
dence intervals.

Objective Value vs. Regularization Strength

Circle in R? Sphere in g3 Helix in B3

6.0 12.21 5]

5.5 12.0 4
v 50 44
2 5.0 11.8 A
- 451
2 11.6 1 34
S 4.0
9
a 11.4
o354 ¥

5>
304 11.2 A
254 1/ 11.0 14
: : : : : : : " : : : : " : : : " : : : : " : : " " :
0.00 025 050 075 1.00 1.25 150 175 2.00 0.00 025 050 075 1.00 1.25 150 175 2.00 0.00 025 050 075 1.00 125 150 1.75 2.00
A A A

Figure 2: Objective value (mean + standard deviation over 15 random starts) as a function of regularization strength A for three
manifold problems. The circle and helix show high variance at low A (up to 1.84 and 2.08), while the sphere exhibits consistently
low variance (< 0.28).

1.45 to 0.30 (79% reduction). The variance across starts is very small (standard deviations < 0.02), indicating that the Jacobian norm at
convergence is largely determined by A rather than initialization.
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Convergence Rate (n=500, K=20, iter=500)

mm Circle in R2
= Sphere in R3
e Helix in R3

Fraction Converged

0.00 0.01 0.05 0.10 0.50 1.00 2.00

Figure 3: Convergence diagnostics for multi-start optimiza-
tion. Most runs (93% on average) terminate at the 200-
iteration limit rather than at a stationary point, but final
gradient norms are generally small (median < 0.3), indicat-
ing near-stationary solutions.

Table 2: Directional curvature analysis at converged critical
points. All 50 sampled directional second derivatives o' Ho
are positive (nneg = 0), providing evidence for local mini-
mum status. Jmm and dpax are the minimum and maximum
observed directional curvatures. Note: (imm is an upper bound
on the minimum eigenvalue.

Manifold A dmin = dmax  Tneg/50
Circle 0.0 12.28 461.67 0
0.1 10.83 476.92 0
0.5 10.45 580.49 0
1.0 11.52 671.04 0
Sphere 00 818 76.64 0
0.1 8.69 75.44 0
0.5 7.08 70.88 0
1.0 62.76 859.35 0
Helix 0.0 141.03 1870.47 0
0.1 81.96 982.71 0
0.5 12454 151243 0
1.0 326.87 3896.46 0

3.3 Hessian Analysis

Table 2 presents the directional curvature analysis. No negative
curvature directions were detected at any converged solution: all
50 random directional second derivatives v " Ho are positive across
all manifolds and A values. Since dpin provides an upper bound
on the true minimum eigenvalue, these results provide probabilis-
tic evidence that the converged points are genuine local minima
rather than saddle points. With 50 samples in a ~15-20 dimensional
parameter space, the coverage is adequate for strong statistical evi-
dence.

The minimum directional curvatures remain bounded away from
zero: 12.28 (circle), 8.18 (sphere), and 81.96 (helix) at A < 0.1. The
spectral spread generally increases with A, indicating that the regu-
larization creates sharper basins. The large jump on the sphere from
A = 0.5 (max 70.88) to A = 1.0 (max 859.35) suggests a qualitative
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change in the basin geometry at that transition. The finite-difference
curvature estimates use a fixed random seed for the Monte Carlo
samples within the objective, reducing noise.

3.4 Decomposed Feasibility Assessment

Table 3 presents the complete decomposed feasibility metrics, with
all entries reported (no missing data). Several patterns emerge from
the decomposition.

First, F1 (data matching) is moderate across all settings (0.79-
0.93) and degrades monotonically with A. On the circle, F1 drops
from 0.924 (A = 0) to 0.855 (A = 2). The sphere shows uniformly
lower F1 (0.79-0.86), reflecting the higher intrinsic difficulty of
matching the sphere’s data distribution.

Second, F2 (posterior matching) is the dominant bottleneck:
values range from 0.005 to 0.350, far below 1.0. The posterior mis-
match values (PM = 1.0-5.3) are large, reflecting the linear encoder’s
limited capacity to approximate the true nonlinear posterior. F2
shows non-monotonic behavior in A for the circle and helix, with
peaks at A = 1.0 (F2 = 0.350 for circle, 0.234 for helix), which drives
the non-monotonic aggregate feasibility.

Third, F3 (geometric constraint) is always 1.0 because the
learned Jacobian norms (< 1.45) are well below the ground-truth
thresholds (C* = 1.0, 8.0, 1.025). The penalty drives the norm below
the true value rather than toward it.

Bootstrap confidence intervals. Figure 6 shows 95% bootstrap con-
fidence intervals for mean feasibility. On the circle, the mean ranges
from 0.287 (1 = 2.0, CL: [0.125, 0.441]) to 0.525 (A = 0.0, CL [0.359,
0.743]). The wide CIs (width 0.31-0.42) reflect the bimodal distri-
bution of feasibility scores across optimization runs, where some
initializations find high-feasibility basins and others do not. While
the point estimates suggest non-monotonicity, the overlapping con-
fidence intervals indicate that individual pairwise differences are
not statistically significant at the 95% level, motivating larger-scale
experiments in future work. On the sphere, all CIs are concentrated
near zero (< 0.14), confirming that low feasibility is robust across
initializations.

3.5 Continuation Analysis

Figure 7 shows the continuation paths. The tracked minimum de-
forms smoothly as A increases—no bifurcation events are observed.
The Jacobian norm decreases smoothly from 0.45 to 0.20 (circle),
1.96 to 0.21 (sphere), and 0.38 to 0.22 (helix). However, the feasi-
bility score monotonically decreases along the continuation path,
from 0.031 to 0.007 on the circle. This contrasts with the multi-start
experiment, where fresh initializations at large A sometimes find
solutions with higher feasibility. This demonstrates that the basin
reached at 1 = 0 may not be the most feasible basin at larger A,
highlighting the path-dependence of gradient-based optimization.

3.6 Pullback Geometry

Table 4 shows the pullback metric analysis. The learned metric at
the origin consistently underestimates the true metric: the trace
ratio Tr(Gy(0))/Tr(G*(0)) ranges from 0.45 (circle, A = 0) down
to 0.064 (sphere, A = 1). On the sphere, where Tr(G*(0)) = 8.0,
the learned trace drops to 0.52 at A = 1, a factor of 15.4 below
the ground truth. This metric discrepancy indicates a fundamental
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Jacobian Frobenius Norm at Converged Solutions
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Figure 4: Jacobian Frobenius norm ||/, (O)||12E at converged solutions vs. 1. Increasing A monotonically decreases the norm:
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A

circle from 0.41 to 0.21, sphere from 1.45 to 0.30, helix from 0.42 to 0.21. Low variance across starts indicates this quantity is

determined by A rather than initialization.

Table 3: Complete feasibility metrics at all A values with decomposed scores. F1 = exp(—MMD) (data matching), F2 = exp(-PM)

(posterior matching), F3 = 1[||J ||f7 < C*] (geometric constraint). Agg. = F1 - F2 - F3. Bold indicates best aggregate per manifold.

All entries reported (no missing data).

Manifold A Data MM Post. MM ||J ||12E F1 F2 F3  Agg.
Circle 0.0 0.079 1.761 0.415 0.924 0.172 1.0 0.159
(C*=1.0) 0.01 0.078 2.100 0.433 0925 0.122 1.0 0.113
0.05 0.074 2.121 0.407 0.929 0.120 1.0 0.111

0.1 0.089 2.527 0.389 0915 0.080 1.0 0.073

0.5 0.108 3.570 0.310 0.897 0.028 1.0 0.025

1.0 0.147 1.050 0.260 0.864 0350 1.0 0.302

2.0 0.156 2.581 0.209 0.855 0.076 1.0 0.065

Sphere 0.0 0.148 3.478 1.453 0.862 0.031 1.0 0.027
(C*=8.0) 0.01 0.163 4.108 1.155 0.850 0.016 1.0 0.014
0.05 0.154 4.987 0.971 0.858 0.007 1.0 0.006

0.1 0.165 3.762 0.882 0.848 0.023 1.0 0.020

0.5 0.198 4.819 0.617 0.820 0.008 1.0 0.007

1.0 0.230 4.540 0.519 0.794 0.011 1.0 0.009

2.0 0.230 5.318 0.302 0.795 0.005 1.0 0.004

Helix 0.0 0.082 1.438 0.420 0921 0.237 1.0 0.219
(C*~1.025) 0.01 0.086 1.789 0.431 0918 0.167 1.0 0.153
0.05 0.069 1.805 0.440 0933 0.164 1.0 0.154

0.1 0.081 2.562 0.399 0922 0.077 1.0 0.071

0.5 0.105 3.215 0.321 0900 0.040 1.0 0.036

1.0 0.146 1.452 0.268 0.864 0.234 1.0 0.202

2.0 0.158 3.047 0.214 0.854 0.048 1.0 0.041

tension: the geometric regularization pushes the learned map away
from the true diffeomorphism, directly undermining data-matching
condition F1. The origin is a special point since the penalty explic-
itly targets || ]f(0)||2F; the metric distance at other points would
additionally reflect general model inadequacy beyond the penalty
effect.

3.7 Sensitivity Analysis

Figures 8 and 9 present the sensitivity analyses.

Noise sensitivity. Varying o € {0.01,0.05,0.1,0.2,0.5} at A = 0.1
reveals a non-trivial dependence on noise level. Very low noise
(0 =0.01) yields poor feasibility (circle: 0.008, sphere: 0.0001, helix:
0.179) because the likelihood becomes extremely peaked, creating a
harder optimization landscape. Moderate noise (o = 0.1-0.2) yields
the highest feasibility (circle: 0.43-0.49, helix: 0.33-0.51). High noise
(o = 0.5) reduces feasibility (circle: 0.30, helix: 0.29) as the signal-to-
noise ratio degrades. The sphere consistently shows low feasibility
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Decomposed Feasibility Components vs. A
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Figure 5: Decomposed feasibility scores F1, F2, F3 vs. A. F2 (posterior matching) is the dominant bottleneck. F1 degrades
monotonically with A, while F2 shows non-monotonic behavior driving the overall feasibility profile. F3 is always 1.0.

Feasibility with 95% Bootstrap Cls (K=20, B=200)
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Figure 6: Bootstrap 95% confidence intervals (B = 200, 15 runs)
for mean feasibility at each \. Wide CIs (width 0.3-0.4) reflect
the bimodal landscape: some runs find high-feasibility basins
while others do not. The sphere has narrow CIs near zero.

(< 0.09) across all noise levels, confirming that its low feasibility is
intrinsic to the manifold geometry.

Sample size sensitivity. Varying n € {50, 100, 200,500} at A = 0.1
shows that feasibility is relatively stable across sample sizes. On the
circle, mean feasibility ranges from 0.35 (n = 200) to 0.51 (n = 100),
with no clear monotonic trend. The sphere remains at low feasibility
(0.04-0.08) regardless of n. This stability indicates that n = 200 is
adequate and that our findings are not driven by finite-sample
effects.

3.8 Landscape Cross-Section

Figure 10 shows a 2D cross-section of the objective landscape for
the circle at A = 0.1, varying two components of the A matrix
around the converged optimum. The landscape displays a clear
basin structure with smooth, bowl-shaped contours, consistent
with the multi-start results showing that different initializations
converge to distinct basins. The asymmetric contour spacing reflects

Table 4: Pullback metric analysis. The learned metric at the
origin systematically underestimates the true geometry, with
trace ratios as low as 0.064 (sphere, A = 1). The discrepancy
grows with A.

Manifold A Tr(Gg(0)) Tr(G*(0)) Ratio
Circle 0.0 0.450 1.000 0.450
0.1 0.405 1.000 0.405
0.5 0.313 1.000 0.313
1.0 0.261 1.000 0.261
Sphere 0.0 1.010 8.000 0.126
0.1 0.825 8.000 0.103
0.5 0.639 8.000 0.080
1.0 0.515 8.000 0.064
Helix 0.0 0.416 1.025 0.406
0.1 0.388 1.025 0.378
0.5 0.309 1.025 0.302
1.0 0.263 1.025 0.256

different curvatures along different directions, consistent with the
Hessian spectral analysis in Table 2.

4 DISCUSSION

Capacity vs. optimization. The oracle feasibility experiment (Ta-
ble 1) provides the critical baseline for interpreting our results. For
the circle and helix, the simple parameterization achieves near-
perfect reconstruction (MSE ~ 2 x 10™%) when fit directly to f*,
demonstrating that f* lies approximately within the model class.
The MLP parameterization also achieves F1 > 0.95 on all manifolds.
The feasibility gap at ELBO-trained solutions is therefore primarily
attributable to the optimization landscape—the ELBO-plus-penalty
objective does not guide optimization toward the regions of param-
eter space corresponding to the ground-truth embedding.

For the sphere, the oracle MSE is higher (0.14-0.16) and the
metric underestimation persists (trace 3.2-3.8 vs. 8.0), indicating a
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Parameter Continuation Paths (A: 0 to 2)
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Figure 7: Parameter continuation tracking a single local minimum as 1 increases from 0 to 2. The continuation path reveals
smooth deformation without bifurcation. Feasibility monotonically decreases along the path, contrasting with multi-start

results.

Noise Sensitivity (A = 0.1, K=10)
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Figure 8: Sensitivity to noise level o at A = 0.1. Feasibility
peaks at moderate noise (¢ = 0.1-0.2) and drops at both ex-
tremes. The sphere remains consistently low (< 0.09) across
all noise levels.

genuine capacity limitation for the stereographic geometry. This
partially explains the sphere’s consistently lower feasibility.

The role of the encoder. The linear amortized encoder is a signif-
icant limitation for F2 (posterior matching). For nonlinear mani-
folds, particularly the sphere via stereographic projection, a linear

Sample Size Sensitivity (A = 0.1, K=10)
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Figure 9: Sensitivity to sample size n at 1 = 0.1. Feasibility is
relatively stable across n € [50,500] for all manifolds, indicat-
ing that n = 200 is adequate.

encoder cannot accurately approximate the true posterior. The pos-
terior mismatch values in Table 3 (1.0-5.3) are large and likely dom-
inated by this encoder capacity limitation. Separating the decoder
capacity (addressed by the oracle experiment) from the encoder
capacity remains important for future work.
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Objective Landscape Cross-Section (Circle, A =0.1)
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Figure 10: 2D cross-section of the objective landscape for the
circle at 1 = 0.1, varying two components of the A matrix
around the optimum on a 50 X 50 grid. The smooth, bowl-
shaped contours confirm the local minimum character and
asymmetric curvature.

Implications for the recoverability theorem. Our results suggest
that the feasibility assumptions of Diepeveen et al’s recoverabil-
ity theorem [8] are difficult to satisfy at local minima found by
gradient-based optimization within the tested parameterization
class. This finding should be interpreted with two caveats: (i) our
parameterization is simpler than the multi-layer normalizing flows
envisioned by the theory, and with more expressive architectures
the landscape may be more favorable; (ii) the linear encoder limits
F2 by construction. Nevertheless, the fundamental trade-off be-
tween geometric regularization (improving F3) and data fidelity
(degrading F1) appears to be intrinsic to the objective structure.

Practical implications. The non-monotonic feasibility profile sug-
gests that practitioners should carefully tune A rather than simply
maximizing it. The path-dependence observed in continuation vs.
multi-start experiments suggests that random restarts may be more
effective than warm-starting from a different A for finding feasi-
ble solutions. The smooth basin structure visible in the landscape
cross-section (Figure 10) suggests that second-order optimization
methods or basin-hopping strategies may be effective.

5 CONCLUSION

We have presented a systematic empirical investigation of the opti-
mization landscape and feasibility in the Riemannian AmbientFlow
objective on three synthetic manifold-learning problems with con-
trolled ground truth.

First, the oracle feasibility analysis confirms that both simple (9-
19 parameters) and MLP (1186-1251 parameters) parameterizations
can approximate the ground-truth embedding (F1 > 0.9), estab-
lishing that infeasibility at ELBO local minima reflects landscape
properties rather than capacity limitations alone.

Conference’17, July 2017, Washington, DC, USA

Second, the optimization landscape contains genuine local min-
ima: no negative directional curvatures were detected in 50 ran-
dom probes at any converged solution across 600+ total directional
samples. The multiplicity of minima—evidenced by high objective
variance across starts—means the specific minimum reached is
initialization-dependent.

Third, there exists a fundamental trade-off between geometric
regularization and feasibility. Increasing A monotonically improves
the geometric constraint (F3) but degrades data matching (F1), while
the posterior matching (F2) exhibits non-monotonic behavior. No
tested configuration achieves near-perfect aggregate feasibility,
with the best scores being 0.302 (circle), 0.027 (sphere), and 0.219
(helix). The recoverability theorem’s assumptions are not satisfied
at local minima found by gradient-based optimization in the tested
configurations, even when the model class has sufficient oracle
capacity.

Fourth, the pullback metric analysis reveals systematic underes-
timation of the true Riemannian geometry, with trace ratios as low
as 0.064 on the sphere.

Fifth, sensitivity analysis confirms that results are robust to
sample size variations (n € {50,500}) and reveals a non-trivial
dependence on noise level, with moderate noise yielding the highest
feasibility.

These findings provide empirical evidence bearing on the open
problem of whether feasibility holds at practical minimizers of the
Riemannian AmbientFlow objective. Addressing this gap will likely
require overparameterized architectures that reshape the landscape
favorably, nonlinear encoders for improved posterior matching, or
optimization strategies specifically designed to navigate toward
feasible basins.
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