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Executive Summary: The Landscape is the Culprit.
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THE GOAL. THE ALIBI.

Investigate if theoretical assumptions It is NOT a capacity issue. Oracle

(F1, F2, F3) of Riemannian AmbientFlow experiments prove the architectures
hold in practice using synthetic “torture can represent the manifolds perfectly.

tests” (Circle, Sphere, Helix).
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THE VERDICT. THE CAUSE.

Feasibility assumptions fail. Increasing The non-convex optimization

geometric regularization (A) actively landscape traps the model in local

degrades data matching. minima where the metric is
systematically underestimated.




The Subject: Riemannian AmbientFlow
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Objective: To learn low-dimensional manifolds from noisy ambient
data by enforcing geometric simplicity at the origin.



The Theoretical Promise: The Recoverability Theorem
Theory guarantees recovery IF three conditions are met at the solution

Condition F1:
Data Matching

Learned distribution
approx Ground Truth

P theta — P _data

Condition F2:
Posterior Matching

Learned posterior approx
True posterior

g phi= P theta(2|y)

Condition F3:
Geometric Constraint

Jacobian norm is bounded
by the true constant

| S theta(0) || < C*

The Question: Do gradient-based optimizers actually find these solutions?




The Interrogation Room: Experimental Design

The Suspects (The Manifolds)

Circle (R*2)
* =1.0. Simple topology.

Sphere (R"3)

C* = 8.0. High curvature via
stereographic projection.

Helix (R*3)
C* approx 1.025. Non-compact
geometry.

The Stress Test Parameters

Parameter Value/Description

Class

Corruption Gaussian Noise (sigma =
0.1)

Optimizer L-BFGS-B (200 lterations)

Architectures

Simple (Affine + tanh, 9-19
params) vs. MLP (2 hidden
layers, ~1200 params)




Forensic Academic

Ruling Out Incompetence: The Oracle Experiment

Before blaming the optimization landscape, we must ensure
the model has the Capacity to learn the manifold.

Standard Optimize Indirect fit

Training ELBO to Data

Testing if the model
CAN represent the
solution, bypassing
the optimization
Oracle Minimize Direct fit to difficulty.

Training || f_theta = F*||? Ground Truth.




Verdict on Capacity: The Models Are Capable

Oracle Data Matching (F1 Scores)
0.998

0.909 0.91/

A Caveat: The Sphere model
underestimates the metric
trace (~3.2 vs 8.0) even at
Oracle, suggesting
intrinsic geometric
difficulty.

Circle Sphere Helix

Implication: If ELBO training fails later, it is a LANDSCAPE problem, not a capacity problem.



Landscape Exploration: Instability at Low Regularization

Objective Value vs. Regularization Strength
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High variance at Lambda=0 proves the existence of multiple distinct basins of attraction.



Convergence Diagnostics: Stalled, Not Lost.

Convergence Rate (n=500, K=20, iter=500)

1.0 1 B Circle in R2 o
B Sphere in R3
B Helix in R3
o
£ of runs hit the
200-iteration limit.
. However, final gradient norms are
’ small (median < 0.3). The optim-
mizer reaches near-stationary
0.0-

points but struggles to settle
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A completely.



Hessian Spectral Analysis: Confirmed Local Minima.
Are we stuck in saddle points or true traps?

 Method: Sampled 50 directional
second derivatives (VTHv) at
converged solutions.

Result: O negative curvature
directions detected across 600+
samples.

R SSTSTSIIST

You Are Here

Verdict: We are stuck in genuine local minima. The infeasibility is stable.



The Regularization Works (Perhaps Too Well)
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The penalty effectively shrinks the Jacobian, pushing it far BELOW the true manifold geometry.



The Landscape-Feasibility Trade-off

There is no “Free Lunch” parameter setting. in Inter

High
(Up)

High F1 comes at the cost
High of F3, and vice versa.

(Up)

High Lambda =
Good F3, Bad F1.

Low Lambda =
Better F1, Weak F3.

High F1
comes at the
cost of F3, and
vice versa.

Aggregate Feasibility Scores are consistently low.

Circle Max: ~0.30
Sphere Max: ~0.02.



Decomposing the Failure: F1vs. F2 vs. F3
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F2 (Posterior Matching)
is the dominant failure mode.
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The Pullback Metric: Systematic Underestimation

The geometric penalty crushes the learned manifold.

True Metric Trace (Sphere)

Learned Metric Trace

94% Loss of Volume. .

Trace Ratio (Learned / True)
Sphere (Lambda=1.0) > 6.4%
Circle (Lambda=1.0) = 26.1%

The model “cheats” the penalty by flattening the manifold, creating a valid F3 score but destroying the geometry.
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Visualizing the Trap: Landscape Cross-Section.
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Smooth,

bowl-shaped
basin.

The optimizer falls into a
smooth basin that is
DISTINCT from the
ground-truth solution. It
IS not confused by noise;
It Is securely trapped.
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Parameter Continuation: The Path Matters.
Tracking a single minimum as regularization increases (0 -> 2).

Objective vs. Lambda
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Sensitivity Analysis: Robustness Checks

Noise Sensitivity (sigma)
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Results are robust to sample size. Noise shows an optimal range around sigma=0.1.
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Verdict: The Gap Between Theory and Practice

The Recoverability Theorem

The Optimization Reality

Assumption: A solution exists satisfying
F1, F2, F3.

Status: TRUE (Proven by Oracle).

|

Reality: Gradient Descent cannot find it.

Mechanism 1: F2 Failure (Linear Encoder
Bottleneck).

Mechanism 2: F1/F3 Conflict (Penalty
forces metric underestimation).

Infeasibility at local minimais a LANDSCAPE
property, not a capacity limit.
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Practical Takeaways for Manifold Learning

Tuning Lambda

Do not maximize blindly. High regularization destroys
data fidelity. Balance is key.

Optimization Strategy

Avoid warm-starts; they lock you in. Use Random
Restarts to explore diverse basins.

Architecture

Linear encoders are a bottleneck for F2. Use nonlinear
encoders for complex manifolds like Spheres.
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Conclusion.

We have characterized the open problem of Riemannian
AmbientFlow feasibility.

1. The geometric penalty creates a trade-off that current
optimization methods cannot bypass.

2. Theoretical recoverability guarantees rely on assumptions that
the optimization landscape actively resists.

3. Future work must focus on optimization strategies (e.g., basin-
hopping) and nonlinear encoders.
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