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ABSTRACT
We investigate optimization-induced flaws in neural network train-
ing beyond the known unlearned matrix scale identified by Ve-
likanov et al. By decomposing weight matrices into eight structural
components, we systematically measure which properties gradient-
based optimization learns well versus poorly across dimensions
32–512. Our key finding is that condition number is dramatically
poorly learned: relative errors grow from 0.27 ± 0.31 at 𝑑=32 to
34.9 ± 126.8 at 𝑑=512, while norm errors remain stable at ∼0.13.
This flaw amplifies with network depth: in deep linear networks,
product condition number error escalates from 0.24× (single layer)
to 653× (2-layer) to 13,167× (3-layer). Adam performs worse than
SGD across all components (overall error 0.60 vs. 0.14), and weight
decay provides no relief. Gradient analysis reveals the root cause:
bottom singular values receive 10−100× less gradient signal than
top ones. Among four corrective strategies, spectral regulariza-
tion achieves the largest condition number improvement (77%),
while learnable multipliers best correct norms (67%), revealing a
fundamental norm–spectral trade-off. Extended training over 1000
epochs shows that while norm errors reach 6.6 × 10−5, condition
number errors plateau at 0.017—a 250× gap that widens with train-
ing. These findings identify condition number learning as a distinct,
depth-amplified optimization flaw.

1 INTRODUCTION
Velikanov et al. [9] identified that standard LLM training fails to
learn the correct scale of parameter matrices, proposing learnable
multipliers as a correction. They explicitly posed the open question:
are there other parts of parameter matrices, apart from row and
column norms, that are not learned automatically?

This work provides a systematic empirical answer through nine
experiments spanning single-layer regression,multi-layer networks,
hyperparameter ablations, and extended training. We decompose
trained weight matrices into eight structural components and track
which are well-learned versus poorly-learned. Our investigation
reveals that:

(1) Condition number is dramatically poorly learned, with
errors growing super-linearly with dimension while norm
errors remain constant.

(2) The flaw amplifies with depth: deep linear networks ex-
hibit condition number errors that grow exponentially from
0.24× (1 layer) to 13,167× (3 layers), and 2-layer ReLUMLPs
show 9.1× error.

(3) Adam [3] performs worse than SGD, weight decay has neg-
ligible effect, and the flaw persists across all learning rates—
confirming it is structural.

(4) The root cause is a gradient signal imbalance: bottom sin-
gular values receive orders-of-magnitude less gradient than
top ones.

(5) Spectral regularization reduces condition number error by
77%, while learnable multipliers reduce norm errors by 67%,
revealing distinct correction mechanisms for norm versus
spectral flaws.

(6) Extended training (1000 epochs) drives norm errors to near-
zero (6.6 × 10−5) while condition number errors plateau at
0.017, with the gap widening over time.

2 RELATEDWORK
2.1 Learnable Scale Corrections
Velikanov et al. [9] showed that row and column norms of LLM
weight matrices are not learned to optimal values, proposing learn-
able per-row and per-column multipliers. Yang et al. [10, 11] devel-
oped the 𝜇P framework showing proper weight matrix scaling is
critical for hyperparameter transfer across model sizes.

2.2 Implicit Regularization and Spectral Bias
Gunasekar et al. [2] proved that gradient descent on matrix factor-
ization implicitly minimizes nuclear norm. Arora et al. [1] extended
this to deep matrix factorization, showing depth amplifies the low-
rank bias. Li et al. [4] connected implicit regularization to mirror
descent. Zhang et al. [13] analyzed algorithmic regularization in
over-parameterized settings.

2.3 Spectral Methods in Training
Miyato et al. [6] introduced spectral normalization for GAN training
stability. Yoshida and Miyato [12] proposed spectral norm regular-
ization for generalization. Saxe et al. [7] derived exact solutions for
deep linear networks, showing learning dynamics depend critically
on singular value structure.

2.4 Weight Matrix Analysis
Martin and Mahoney [5] studied weight matrix singular value dis-
tributions using random matrix theory. Sharma and Kaplan [8]
connected spectral properties to neural scaling laws.

3 METHODOLOGY
3.1 Matrix Decomposition Framework
For a weight matrix𝑊 ∈ R𝑚×𝑛 with SVD𝑊 = 𝑈 Σ𝑉⊤, we track
eight structural components:

• Row/Column norms: ∥𝑊𝑖,:∥2, ∥𝑊:, 𝑗 ∥2
• Singular values: 𝜎1 ≥ · · · ≥ 𝜎min(𝑚,𝑛)
• Condition number: 𝜅 (𝑊 ) = 𝜎1/𝜎min
• Effective rank: |{𝑖 : 𝜎𝑖 > 0.01𝜎1}|
• Spectral gap: (𝜎1 − 𝜎2)/𝜎1
• Frobenius norm: ∥𝑊 ∥𝐹
• Overall matrix: ∥𝑊trained −𝑊target∥𝐹 /∥𝑊target∥𝐹
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For each component, we compute relative error between trained
and target values.

3.2 Experimental Design
We train matrices via gradient-based optimization on synthetic
regression: given target𝑊 ∗ ∈ R𝑑×𝑑 , minimize 1

2E[∥𝑊𝑥 −𝑊 ∗𝑥 ∥2]
over random batches 𝑥 ∼ N(0, 𝐼 ) with noise 𝜖 ∼ N(0, 0.012𝐼 ). We
test 𝑑 ∈ {32, 64, 128, 256, 512} with 10–15 independent trials per
configuration (seed 42 + 100𝑘). Target matrices use heterogeneous-
norm structure with rows scaled by exp(N (0, 0.25)). Default: 200
epochs, batch size 64, LR 0.01 (SGD) or 0.001 (Adam).

3.3 Multi-Layer Networks
To test whether spectral flaws persist beyond single-matrix regres-
sion, we train deep linear networks (𝑦 =𝑊𝐿 · · ·𝑊1𝑥 ) of depth 2 and
3, and 2-layer ReLUMLPs (𝑦 =𝑊2 ReLU(𝑊1𝑥)) in a teacher-student
setup. For deep linear networks, we track both the product

∏
𝑊𝑖

versus𝑊 ∗ and individual layer condition numbers.

3.4 Corrective Strategies
We evaluate four strategies:

(1) Standard SGD: Baseline (LR 0.01).
(2) Learnablemultipliers [9]: Per-row/column scaling𝑊eff =

diag(𝑟 )𝑊 diag(𝑐).
(3) Spectral regularization: Penalty 𝜆(log𝜅 (𝑊 )−log𝜅 (𝑊 ∗))2

with analytical SVD gradients and gradient clipping.
(4) SVD correction: Periodic singular value adjustment to-

ward target spectrum every 20 epochs.

Figure ?? provides an overview of the complete experimental
framework, showing how the matrix decomposition, training, and
analysis components connect across the nine experiments. Figure ??
illustrates the component learning hierarchy, depth amplification
mechanism, and the norm–spectral trade-off that motivates sepa-
rate corrective strategies.

4 RESULTS
4.1 Component Learning Quality (Exp. 1)
Figure 1 shows relative error across dimensions 32–512. Norm-
related components maintain stable errors (∼0.13), while condition
number error grows dramatically—from 0.27 ± 0.31 at 𝑑=32 to
34.9 ± 126.8 at 𝑑=512. Spectral gap (0.03−0.13) and effective rank
(∼0.001) are well-learned, indicating the flaw is specific to the ratio
of extreme singular values.

4.2 Optimizer Comparison (Exp. 2)
Figure 2 compares SGD and Adam at 𝑑=128. Adam performs sub-
stantially worse across all components: row norm error 0.59 vs.
0.13, overall matrix error 0.60 vs. 0.14. Both optimizers show poor
condition number learning (SGD: 0.87 ± 1.40; Adam: 0.90 ± 0.97),
confirming this is a structural limitation. Adam’s per-parameter
adaptive rates disrupt the coherent spectral structure that SGD’s
uniform updates preserve [4].

4.3 Gradient Signal Analysis (Exp. 3)
Figure 3 reveals the mechanism: gradient magnitude |𝜕𝐿/𝜕𝜎𝑖 | for 𝜎1
is 10−100× larger than for 𝜎min. SGD efficiently adjusts large singu-
lar values but receives negligible signal for the smallest, preventing
convergence of 𝜅 = 𝜎1/𝜎min.

4.4 Corrective Strategies (Exp. 4)
Figure 4 compares four correction strategies at 𝑑=64. A key find-
ing is the norm–spectral trade-off: learnable multipliers reduce
norm errors by 67% (row norms: 0.134 → 0.044) but barely affect
condition number (1.23 → 1.11, only 10%). Conversely, spectral
regularization reduces condition number error by 77% (1.23 → 0.29)
but leaves norm errors unchanged (0.134 → 0.134). SVD correction
achieves a middle ground: 64% norm reduction and 32% condition
number reduction.

4.5 Training Dynamics (Exp. 5)
Figure 5 shows component error evolution during 200 epochs. Norm
errors decrease smoothly and monotonically. Condition number
errors show erratic behavior with high variance, consistent with
the weak gradient signal.

4.6 Multiplier Effect Across Structures (Exp. 6)
Figure 6 shows the corrected multiplier comparison across three
matrix structures (same target for both conditions). Block-diagonal
targets see 93% improvement from multipliers; low-rank targets
see only 29%. For all structures, condition number improvement
from multipliers is smaller than norm improvement.

4.7 Deep Network Analysis (Exp. 7)
Figure 7 presents our most critical new result: condition number
errors amplify exponentially with depth. For deep linear net-
works learning the same target𝑊 ∗:

• Single layer: Product condition number error = 0.24×,
overall error = 0.05.

• 2-layer linear: Condition number error = 653×, overall
error = 0.22.

• 3-layer linear: Condition number error = 13,167×, overall
error = 0.26.

• 2-layer ReLU MLP: Condition number error = 9.1×, over-
all error = 0.57.

The product condition number escalates from target 𝜅 ≈ 928
to 1,510 (1L), 242,566 (2L), and 4.8 × 106 (3L). This exponential
amplification occurs because individual layer condition numbers
(1,000−1,600) multiply across layers: 𝜅 (𝑊𝐿 · · ·𝑊1) ≤

∏
𝜅 (𝑊𝑖 ). The

ReLU MLP shows the same flaw with student layer condition num-
bers (2,719 and 6,060) far exceeding teacher values (∼1,136).

4.8 Hyperparameter Sensitivity (Exp. 8)
Figure 8 shows that the condition number flaw persists across all
hyperparameter settings:

• Learning rate: At every LR, condition number error ex-
ceeds norm error. The gap ratio (cond/norm) grows from
1.0× at LR= 0.001 (under-trained) to 9.2× at LR= 0.01 to
440× at LR= 0.05 (well-trained).
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Figure 1: Experimental framework for identifying spectral optimization flaws. The pipeline decomposes weight matrices
via SVD into eight structural components, trains via SGD and Adam across five dimensions (𝑑 ∈ {32, 64, 128, 256, 512}), extends
analysis to deep linear networks (depth 2–3) and ReLU MLPs, and evaluates four corrective strategies (standard SGD, learnable
multipliers, spectral regularization, SVD correction) through nine systematic experiments.

Figure 2: Spectral optimization flaw hierarchy. Component
learning quality ranges from well-learned (effective rank
∼0.001 error, spectral gap 0.03−0.13) through moderately
learned (norms ∼0.13) to poorly learned (condition number:
0.27 at 𝑑=32 to 34.9 at 𝑑=512). Depth amplification escalates
condition number error from 0.24× (1-layer) to 13,167× (3-
layer), driven by gradient imbalance where bottom singular
values receive 10−100× less gradient signal.

• Weight decay: Condition number error is virtually un-
changed across 𝜆 ∈ {0, 10−4, 10−3, 10−2}, all giving ∼1.23.
Weight decay acts on norm scale, not spectral ratios.

Figure 3: Component errors vs. dimension (15 trials, ±1 std).
Condition number error grows super-linearly while norms
remain flat.

4.9 Extended Training Convergence (Exp. 9)
Figure 9 reveals that condition number error is notmerely a convergence-
speed issue. Over 1000 epochs at 𝑑=128:

• Row norm error: 0.93 → 6.6 × 10−5 (near-zero).
• Condition number error: 0.75 → 0.017 (plateaus).
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Figure 4: SGD vs. Adam at 𝑑=128 (15 trials, ±1 std). Adam is
worse across all components.

Figure 5: Left: Gradient per singular value. Right: SV evolu-
tion. Bottom SV receives 10−100× less gradient.

Figure 6: Four correction strategies at𝑑=64 (10 trials). Spectral
reg. best for condition number (77%); multipliers best for
norms (67%).

The ratio of condition number to norm error grows from 0.8× to
250× during training (Figure 9, right), demonstrating that the gap
widens rather than closes. Norms converge exponentially; condition
number converges slowly with erratic oscillations, consistent with
the gradient signal imbalance.

Figure 7: Error dynamics during training (𝑑=64, 10 trials).
Norms converge smoothly; condition number remains er-
ratic.

Figure 8: Standard vs. multiplier training across structures
(𝑑=64, 15 trials).

Figure 9: Left: Condition number error vs. depth (10 trials).
Error grows exponentially. Right: Overall vs. spectral error.

5 DISCUSSION
5.1 Condition Number as a Depth-Amplified

Flaw
Our results identify condition number learning as fundamentally
different from unlearned scale [9]. Scale (norm) errors are moderate,
dimension-independent, correctable by multipliers, and vanish with
extended training. Condition number errors are large, grow with
dimension, resist multiplier correction, and plateau rather than
vanish. Most critically, they amplify exponentially with depth: a
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Figure 10: Left: LR sensitivity. Right:Weight decay sensitivity.
Condition number error persists across all settings.

Figure 11: Left: 1000-epoch training (𝑑=128, 10 trials). Norms
reach 10−5; cond. # plateaus at 0.017. Right: The error ratio
widens to 250×.

3-layer linear network produces 13,167× condition number error
versus 0.26 overall error.

This has direct implications for LLM training: transformerweight
matrices at𝑑=4096+ with 32+ layers could exhibit severely distorted
spectral structure relative to the optimum, potentially explaining
training instabilities and the need for careful learning rate warmup.

5.2 The Norm–Spectral Trade-off
Our corrective strategy evaluation reveals a previously unrecog-
nized trade-off. Learnable multipliers [9] correct norms (67% re-
duction) but not condition number (10%). Spectral regularization
corrects condition number (77% reduction) but not norms (0%).
SVD correction offers a compromise (64%/32%). This suggests that
effective training correctionsmust combine norm and spectral mech-
anisms.

5.3 Why Adam is Worse
Adam’s per-parameter adaptive learning rates are designed for dif-
ferent gradient scales, but for matrix learning, element-wise adap-
tation disrupts the coherent spectral structure that SGD’s uniform
updates preserve [4]. This aligns with observations that SGD has
better implicit regularization properties than Adam.

5.4 Limitations
Our experiments use synthetic regression tasks, which isolate the
core optimization dynamics but lack multi-layer nonlinearities,

normalization layers, and structured data. While we demonstrate
the flaw in deep linear networks and ReLU MLPs, validation on full
transformer architectures with pre-trained checkpoints remains
future work. Dimensions tested (32−512) are smaller than real LLM
weight matrices.

6 CONCLUSION
We identify condition number—the ratio of extreme singular
values—as a distinct, depth-amplified optimization flaw in neural
network training. Through nine experiments, we show this flaw (1)
grows super-linearly with dimension, (2) amplifies exponentially
with network depth (up to 13,167× error at 3 layers), (3) persists
across optimizers, learning rates, and weight decay, (4) resists exist-
ing norm-based corrections but responds to spectral regularization,
and (5) plateaus rather than vanishes with extended training. The
root cause is a gradient signal imbalance where small singular val-
ues receive orders-of-magnitude less gradient than large ones. Our
findings motivate combining norm corrections (learnable multi-
pliers) with spectral corrections (regularization) to address both
classes of optimization flaws in deep learning.

REFERENCES
[1] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. 2019. Implicit Regular-

ization in Deep Matrix Factorization. Advances in Neural Information Processing
Systems 32 (2019).

[2] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam
Neyshabur, and Nati Srebro. 2017. Implicit Regularization in Matrix Factor-
ization. Advances in Neural Information Processing Systems 30 (2017).

[3] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. International Conference on Learning Representations (2015).

[4] Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. 2021. Implicit Bias of Gradient
Descent on Reparametrized Models: On Equivalence to Mirror Descent. Advances
in Neural Information Processing Systems 34 (2021).

[5] Charles H Martin and Michael W Mahoney. 2021. Implicit Self-Regularization in
Deep Neural Networks: Evidence from Random Matrix Theory and Implications
for Training. Journal of Machine Learning Research 22, 165 (2021), 1–73.

[6] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018.
Spectral Normalization for Generative Adversarial Networks. In International
Conference on Learning Representations.

[7] Andrew M Saxe, James L McClelland, and Surya Ganguli. 2014. Exact Solutions
to the Nonlinear Dynamics of Learning in Deep Linear Networks. In International
Conference on Learning Representations.

[8] Utkarsh Sharma and Jared Kaplan. 2020. A Neural Scaling Law from the Dimen-
sion of the Data Manifold. arXiv preprint arXiv:2004.10802 (2020).

[9] Maxim Velikanov et al. 2026. LearnableMultipliers: Freeing the Scale of Language
Model Matrix Layers. arXiv preprint arXiv:2601.04890 (2026).

[10] Greg Yang et al. 2022. Tensor Programs V: Tuning Large Neural Networks via
Zero-Shot Hyperparameter Transfer. arXiv preprint arXiv:2203.03466 (2022).

[11] Greg Yang and Edward J Hu. 2021. Tuning Large Neural Networks via Zero-Shot
Hyperparameter Transfer. arXiv preprint arXiv:2101.03697 (2021).

[12] Yuichi Yoshida and Takeru Miyato. 2017. Spectral Norm Regularization for
Improving the Generalizability of Deep Learning. arXiv preprint arXiv:1705.10941
(2017).

[13] Yuqian Zhang, Simon S Du, and Jason D Lee. 2019. Algorithmic Regularization
in Over-parameterized Matrix Sensing and Neural Networks with Quadratic
Activations. In Conference on Learning Theory.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Learnable Scale Corrections
	2.2 Implicit Regularization and Spectral Bias
	2.3 Spectral Methods in Training
	2.4 Weight Matrix Analysis

	3 Methodology
	3.1 Matrix Decomposition Framework
	3.2 Experimental Design
	3.3 Multi-Layer Networks
	3.4 Corrective Strategies

	4 Results
	4.1 Component Learning Quality (Exp. 1)
	4.2 Optimizer Comparison (Exp. 2)
	4.3 Gradient Signal Analysis (Exp. 3)
	4.4 Corrective Strategies (Exp. 4)
	4.5 Training Dynamics (Exp. 5)
	4.6 Multiplier Effect Across Structures (Exp. 6)
	4.7 Deep Network Analysis (Exp. 7)
	4.8 Hyperparameter Sensitivity (Exp. 8)
	4.9 Extended Training Convergence (Exp. 9)

	5 Discussion
	5.1 Condition Number as a Depth-Amplified Flaw
	5.2 The Norm–Spectral Trade-off
	5.3 Why Adam is Worse
	5.4 Limitations

	6 Conclusion
	References

