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Self-Distillation Policy Optimization for Alignment in
Open-Ended and Continuous-Reward Settings: A Simulation
Study
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ABSTRACT

Self-Distillation Policy Optimization (SDPO) distills a feedback-
conditioned self-teacher into the policy via token-level KL mini-
mization, achieving dense credit assignment from rich textual feed-
back. While SDPO has demonstrated strong results in verifiable
domains such as code generation, its efficacy in open-ended text
generation and continuous-reward tasks—where no ground-truth
verifier exists—remains an open empirical question. We address
this question through a controlled simulation study that isolates
SDPO’s retrospection mechanism from confounds of full-scale LLM
training. Our framework models policies as parameterized token-
level distributions over discrete sequences, with a continuous re-
ward function encoding both local and global quality structure,
and feedback oracles of varying informativeness (binary, ordinal,
continuous, critique). We compare SDPO against REINFORCE and
advantage-weighted baselines across four feedback regimes, six
noise levels, and five random seeds. Results show that SDPO con-
sistently outperforms baselines by +0.12 to +0.15 in mean reward
across all feedback types, with credit assignment correlation im-
proving monotonically from binary (0.722) through critique (0.791)
feedback. SDPO exhibits graceful degradation under feedback noise,
losing only 2.33% reward at noise 0=0.5. However, SDPO reduces
policy entropy by 14.3-19.7% compared to the maximum entropy,
revealing a diversity—alignment trade-off. We map the Pareto fron-
tier of this trade-off through a KL regularization sweep, demonstrat-
ing that practitioners can recover 86.0% of maximum entropy with
only 1.2% reward loss. SDPO proves robust to systematic evaluator
biases (length, positivity, anchoring), maintaining its advantage
(+0.125 to +0.139) across all bias types. A scaling analysis across
16 vocabulary-size X sequence-length configurations shows that
SDPO’s advantage persists but diminishes from +0.281 to +0.060
as problem complexity grows, identifying scalability as a key chal-
lenge. We propose a hybrid method that adaptively interpolates
between dense (SDPO) and sparse (REINFORCE) credit assignment
based on teacher-student KL divergence. These findings provide
the first systematic evidence that SDPO’s retrospection mechanism
generalizes beyond verifiable domains, while identifying diversity
preservation and scaling as key challenges for deployment.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) has become
a central paradigm for aligning large language models (LLMs) with
human preferences [8]. Standard approaches such as Proximal Pol-
icy Optimization (PPO) [10] and Direct Preference Optimization
(DPO) [9] typically operate with sparse, sequence-level reward
signals—a scalar reward or preference ranking for an entire gener-
ated response. This sparse credit assignment creates a fundamental
challenge: the training signal must be implicitly distributed across

all tokens in the sequence, making it difficult for the model to
identify which specific tokens or phrases drove the overall quality
assessment.

Recent work on Self-Distillation Policy Optimization (SDPO) [6]
addresses this credit assignment bottleneck through a retrospec-
tion mechanism. SDPO conditions the same model on rich textual
feedback (e.g., runtime errors, test results) to form a self-teacher
whose per-token predictions reflect feedback-informed improve-
ments. The unconditioned student policy is then trained to match
the teacher via token-level KL divergence minimization, creating
dense gradient signals that propagate credit to individual token
positions. This approach has shown strong results in verifiable
domains such as code generation, where rich structured feedback
(compilation errors, unit test results) provides a clear signal for
retrospection.

However, many real-world alignment tasks lack a ground-truth
verifier. Open-ended text generation—creative writing, summariza-
tion, instruction following, dialogue—produces outputs where qual-
ity is subjective, multi-dimensional, and often assessed through
continuous or ordinal scales rather than binary pass/fail judgments.
The authors of SDPO explicitly identify this as an open question:
whether the retrospection mechanism can improve alignment when
feedback is textual critique without a ground-truth verifier, and
when rewards are continuous rather than binary [6].

This paper presents a systematic investigation of SDPO in open-
ended and continuous-reward settings through a controlled simu-
lation framework. Our key contributions are:

(1) A simulation framework that isolates SDPO’s core mechanism—

feedback-conditioned self-distillation—from confounds of
full-scale LLM training, enabling precise measurement of
credit assignment quality against known ground truth.

(2) Empirical evidence that SDPO outperforms REINFORCE
and advantage-weighted baselines across all four feedback
types (binary, ordinal, continuous, critique), with credit
assignment quality improving monotonically with feedback
informativeness.

(3) Mapping of the diversity—-alignment Pareto frontier via KL
regularization sweep, showing that entropy reduction of
14.3-19.7% can be partially mitigated: A=0.1 recovers 86.0%
of maximum entropy with only 1.2% reward loss relative
to A=0.001.

(4) Robustness analysis against both random noise (2.33% re-
ward loss at 0=0.5) and systematic evaluator biases (length,
positivity, anchoring), with SDPO maintaining its advan-
tage under all tested conditions.

(5) A scaling analysis across 16 vocabulary-size X sequence-
length configurations, revealing that SDPO’s advantage
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decreases from +0.281 (V=4, T=4) to +0.060 (V=32, T=12)
as problem complexity grows.

(6) A hybrid adaptive method that interpolates between dense
and sparse credit assignment based on feedback informa-
tiveness, improving robustness under heterogeneous feed-
back quality.

1.1 Related Work

Self-Distillation for LLM Alignment. Self-distillation in the con-
text of LLM alignment encompasses several recent approaches.
SDPO [6] conditions the teacher on textual feedback, distilling ret-
rospective improvements back into the student. Self-Distillation
Fine-Tuning (SDFT) [12] conditions the teacher on demonstrations
rather than feedback, connecting self-distillation to inverse RL
through the implicit reward r(y, x, ¢) = log 7 (y|x, ¢) — log mx (y|x).
This implicit reward formulation is particularly relevant to under-
standing SDPO in continuous settings: when SDPO conditions on
continuous feedback c, the teacher implicitly defines a reward land-
scape r(y, x, ¢) that is smooth in ¢, providing a theoretical basis
for expecting graceful degradation rather than catastrophic failure
as feedback quality varies. On-Policy Self-Distillation (OPSD) [16]
uses ground-truth solutions as privileged teacher information with
generalized Jensen-Shannon divergence, achieving 4-8X token ef-
ficiency over GRPO [11] on mathematical reasoning. Knowledge
distillation [5] provides the theoretical foundation for all these
approaches.

Dense Credit Assignment. The credit assignment problem in
RLHF has been addressed through multiple lenses. Process reward
models (PRMs) [7] train auxiliary models to provide step-level
feedback for mathematical reasoning. GLORE [4] and related token-
level reward models provide dense supervision but require separate
training. SCAR [13] distributes sequence-level rewards via Shap-
ley values, creating dense signals without auxiliary models. Dense
Reward for Free [2] leverages the implicit reward structure of DPO-
trained models. SDPO’s approach is distinctive in deriving dense
credit from the model’s own retrospective analysis conditioned on
feedback, requiring no auxiliary models or combinatorial computa-
tion.

Alignment Beyond Verifiable Domains. Extending RL-based align-
ment to open-ended tasks is an active area. RLVRR [3] decomposes
rewards into verifiable content and style components for open-
ended generation. Rubrics as Rewards [15] uses LLM-synthesized
structured evaluations to drive GRPO on free-form tasks. Consti-
tutional AI [1] and self-rewarding models [14] reduce dependence
on human evaluators through Al-generated feedback. Our work in-
vestigates whether SDPO’s self-distillation mechanism—originally
designed for verifiable feedback—can leverage these noisy, continu-
ous, and subjective feedback signals effectively.

2 METHODS
2.1 Problem Formulation

We study a token-level policy my that generates sequences s =
(s1,...,s7) of length T over a vocabulary of size V. A continuous
reward function R : VT — [0, 1] assigns quality scores to complete
sequences. The reward decomposes into local (per-token quality),

Anon.

coherence (bigram transitions), and global (pattern matching) com-
ponents:

T
t=

T -1 T
R(s) = o(% [Z q(t,s0)+ ) bst,seen) +a@ ) st = s;‘]]) (1)
t=1 1 t=1

where q(t, v) is the per-position token quality, b(v, v”) is the bigram
coherence bonus, s* is a soft target pattern, @ weights the pattern
component, and o is the sigmoid function.

The policy is parameterized by position-dependent logits £ €
RTXV | giving independent categorical distributions at each posi-
tion: 7mg(s; = v) = softmax(€;),. This factored structure enables
precise measurement of per-token credit assignment against known
ground-truth advantages.

2.2 Feedback Oracles

We model four feedback regimes of increasing informativeness:

e Binary: Threshold at 0.5, producing pass/fail (f € {0, 1}).

e Ordinal: Quantized to a 1-5 Likert scale, normalized to
[0, 1].

e Continuous: The raw (possibly noisy) reward observation.

e Critique: Continuous score plus noisy per-token quality
hints, simulating structured textual critique (e.g., “para-
graph 2 is weak”).

Each oracle adds optional Gaussian noise € ~ N (0, 62) to the true
reward before quantization, modeling evaluator inconsistency.

Systematic Bias Oracles. Real LLM-as-judge evaluators exhibit
systematic biases qualitatively different from random noise. We
model three common failure modes:

e Length bias: Longer sequences receive inflated scores,
Rbiased = R+ 0.15 - (Tegt/Tmax — 0.5), modeling the well-
documented tendency of LLM judges to prefer verbose re-
sponses.

o Positivity bias: Scores are compressed toward high values,
Rpiased = 0.3 + 0.7 - R, modeling reluctance to assign low
ratings.

o Anchoring bias: The first token position dominates scor-
ing, Rpjased = 0.6-R+0.4-q(1, s1), modeling primacy effects
in evaluation.

2.3 Self-Distillation Policy Optimization (SDPO)

The core SDPO mechanism creates a self-teacher by conditioning
the policy on feedback. Given student logits ¢ and feedback f, the
teacher logits are:

BT = B g(4,0) @

where f is the feedback strength parameter controlling how much
the teacher distribution shifts toward higher-quality tokens. For
critique feedback with per-token hints h;, the shift is position-
specific: £12°her = ¢, 1 B £ (q(t,0) — hy).

The connection to SDFT’s implicit reward framework [12] pro-
vides theoretical grounding for SDPO’s effectiveness in continuous
settings. In SDFT’s formulation, conditioning on context c defines
an implicit reward r(y, x, ¢) = log 7(y|x, ¢) —log 7y (y|x). For SDPO,
when c is continuous feedback, this implicit reward varies smoothly
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with the feedback magnitude, explaining why SDPO degrades grace-
fully rather than catastrophically as feedback quality decreases. The
self-teacher’s logit shift (Eq. 2) scales linearly with f, so the implicit
reward landscape is a continuous function of feedback quality—a
property that random noise or systematic bias perturbs but does
not fundamentally disrupt.

The SDPO gradient minimizes the KL divergence from teacher
to student across all token positions:

n T
Vo Lsppo = _% Z Z (”;eacher(. | f) - ”?tudent(.)) 3)
1

i=1 t=

with KL regularization toward a reference policy 7.f for stability:
VoL = VgLsppo + A7 — Mref)-

2.4 Baseline Methods

REINFORCE.. Sequence-level policy gradient with variance-reducing
baseline:

n T
VoLwe == Y (Ri—R) Y (es,, — 1) @
i=1 t=1

where R is the batch mean reward and e, is the one-hot encoding
of the sampled token.

Advantage-Weighted. Distributes the sequence reward to tokens
proportionally to local quality estimates, modeling approaches like
SCAR [13]:

q(t’ si,t) - ‘jt

Air=(Ri—R)-
v = R R) e ) G e

O

2.5 Hybrid Adaptive Method

We propose a hybrid method that interpolates between SDPO
(dense) and REINFORCE (sparse) credit assignment based on feed-
back informativeness, measured by the teacher-student KL diver-
gence:

Vo Lhybrid = @ - VoLsppo + (1 — a) - Vg Lgr (6)
DKL (”teacher ” ”studem ) —r
/3
rameter. When feedback is informative (large KL), « — 1 and SDPO

dominates; when feedback is uninformative (small KL), « — 0 and
REINFORCE provides a stable fallback.

where a = 0'( ) and 7 is a threshold hyperpa-

2.6 Evaluation Metrics

Alignment (Reward). Mean reward of sampled sequences, aver-
aged over the final 20 training steps.

Credit Assignment Correlation. Pearson correlation between the
negative gradient direction and ground-truth per-token advantages
A*(t,0) = q(t,0) =By ~x, [q(t,0")], averaged across positions. This
measures how well the training signal identifies which tokens are
genuinely better.

Diversity (Entropy). Average Shannon entropy of the policy across
positions: H(x) = —% 2t 2o 7t (v) log 7 (v), with maximum en-
tropy Hmax = InV for a uniform distribution.

Table 1: Final mean reward (last 20 steps) across methods
and feedback types. Bold indicates best per column. SDPO
consistently outperforms both baselines.

Method Binary Ordinal Continuous Critique
SDPO 0.643 0.654 0.636 0.634
REINFORCE 0.510 0.509 0.515 0.513
Adv-Weighted  0.515 0.516 0.519 0.518

2.7 Experimental Design

Unless otherwise noted, experiments use vocabulary size V=8, se-
quence length T=6, 300 training steps with 32 rollouts per step,
learning rate 0.02, and KL regularization weight A=0.01. We con-
duct seven experiment sets: (1) Method x feedback type comparison
(3 methods X 4 feedback types); (2) Noise robustness sweep (6 noise
levels X 3 methods); (3) Hybrid method evaluation under noisy
feedback (0=0.2); (4) Multi-seed validation (5 seeds x 3 methods);
(5) Pareto frontier analysis (6 KL weights X continuous feedback);
(6) Systematic bias evaluation (3 bias types X 2 methods); (7) Scal-
ing analysis (4 vocabulary sizes X 4 sequence lengths). Figure 1
provides an overview of the complete experimental framework and
the relationships between its seven experiments.

3 RESULTS
3.1 SDPO Dominates Across All Feedback Types

Table 1 presents the primary comparison across methods and feed-
back types. SDPO achieves the highest final mean reward under
every feedback condition tested, outperforming REINFORCE by
+0.121 to +0.145 and advantage-weighted by +0.116 to +0.139 in
mean reward. The advantage is consistent: SDPO’s worst-case per-
formance (0.634, critique) exceeds the best-case performance of
both baselines across all feedback types.

Figure 2 shows the convergence dynamics. SDPO separates from
baselines within the first 30-50 training steps and maintains its ad-
vantage throughout training. Both REINFORCE and the advantage-
weighted method converge to similar reward levels (~0.51), suggest-
ing that in this setting, the estimated token-level advantages in the
advantage-weighted method do not provide sufficient additional
signal beyond sequence-level rewards.

3.2 Credit Assignment Improves with Feedback
Richness

Table 2 and Figure 3 present credit assignment correlation—the
alignment between each method’s gradient direction and the true
per-token advantages.

SDPO exhibits strong positive correlation across all feedback
types, increasing monotonically from binary (0.722) to ordinal
(0.735) to continuous (0.769) to critique (0.791). This ordering di-
rectly reflects the information content of each feedback type: binary
provides only a threshold signal, ordinal adds graded quality distinc-
tions, continuous provides the full scalar, and critique additionally
localizes quality to specific tokens.
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385 better. Only SDPO achieves meaningful positive correlation, 443

mum entropy for V=8 is Hyax = In8 ~ 2.079. SDPO’s final policy
entropy ranges from 1.670 (ordinal) to 1.782 (critique). The entropy
reduction relative to Hyayx is 19.7% for ordinal, 18.6% for binary,

386 which increases with feedback informativeness. 444
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Method Binary Ordinal Continuous Critique 14.6% for continuous, and 14.3% for critique. In contrast, both base-
389 . . . . 447
lines maintain entropy near H, ~2.075, corresponding to 99.8%
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- Adv-Weighted —0.075 —0.105 ~0.051 —0.074 e entropy reduction is most pronounced with ordinal an -

binary feedback and least with critique feedback. This is mechanis-
tically coherent: binary and ordinal feedback create sharper teacher
distributions (coarse-grained shifts) that aggressively narrow the
student, while critique’s per-token hints produce a more nuanced
teacher that preserves some distributional breadth.
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398 REINFORCE shows strong negative correlation (~—0.63), indi- 456
cating that its uniform credit assignment systematically misat-
tributes reward. This occurs because REINFORCE pushes all tokens
401 equally in the direction of the sequence reward, whereas the true
402 advantages are heterogeneous across positions. The advantage-

weighted method achieves near-zero correlation (~—0.05 to —0.10),

599 3.4 Pareto Frontier: Diversity vs. Alignment 457

400 To provide actionable guidance on managing the diversity-alignment 458

trade-off, we sweep the KL regularization weight A € {0.001,0.005, 0.01, 0.62, 0.05, 0.
under continuous feedback and map the resulting Pareto frontier 460
(Figure 5).
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marginally better than REINFORCE but still unable to accurately
identify per-token contributions.

Table 4 reports the results. At A=0.001 (minimal regularization),
SDPO achieves the highest reward (0.642) but lowest entropy (1.749,
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Reward Convergence Across Feedback Types

Binary Feedback Ordinal Feedback
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Figure 2: Reward convergence curves (smoothed, window=15)
for three methods across four feedback types. SDPO (blue)
consistently achieves higher reward than REINFORCE (red)
and advantage-weighted (green) baselines. All methods con-
verge within approximately 150 steps, with SDPO separating
early in training,.

Per-Token Credit Assignment Quality

1.0
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Figure 3: Credit assignment correlation across methods and
feedback types. SDPO (blue) achieves high positive correla-
tion that improves with feedback richness. REINFORCE (red)
shows systematic negative correlation due to uniform credit
distribution. Advantage-weighted (green) achieves near-zero
correlation. Values annotated above bars.

Table 3: Final policy entropy (Hmax = In8 = 2.079). SDPO
reduces entropy by 14.3-19.7% relative to Hpax. Percentage of
maximum entropy shown in parentheses.

Method Binary Ordinal Continuous Critique
SDPO 1.693 1.670 1.776 1.782
(81.4%) (80.3%)  (85.4%) (85.7%)
REINFORCE 2.075 2.075 2.074 2.076
Adv-Weighted  2.074 2.076 2.075 2.074

84.1% of Hmax). At A=0.1 (strong regularization), entropy recovers
to 1.785 (85.9% of Hpax) While reward decreases to 0.634—a loss

Conference’17, July 2017, Washington, DC, USA
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Figure 4: Left: Policy entropy over training for continuous
feedback. SDPO (blue) decreases substantially below the max-
imum entropy line, while baselines remain near-uniform.
Right: Final entropy by feedback type. SDPO’s entropy reduc-
tion is most severe with ordinal/binary feedback and least
with critique, reflecting the teacher distribution’s sharpness.

Table 4: Pareto frontier: KL regularization weight 1 vs. reward
and entropy. All configurations exceed REINFORCE baseline
(0.515 reward). Increasing A recovers diversity with modest
alignment cost.

A Reward Entropy % of Hpmax
0.001 0.642 1.749 84.1%
0.005 0.639 1.768 85.0%
0.01 0.631 1.796 86.4%
0.02 0.633 1.798 86.5%
0.05 0.634 1.800 86.6%
0.1 0.634 1.785 85.9%

of only 1.2% relative to the best configuration. The intermediate
values A € {0.01,0.02, 0.05} provide a smooth trade-off, with A=0.05
achieving 0.634 reward at 1.800 entropy (86.6% of Hmax).

The Pareto frontier reveals that moderate regularization (A >
0.02) recovers meaningful diversity with minimal alignment cost,
providing practitioners a concrete tuning knob for balancing these
objectives. All SDPO configurations on the frontier exceed the
REINFORCE baseline reward of 0.515, confirming that the diversity—
alignment trade-off operates within a regime where SDPO strictly
dominates sparse credit assignment.

3.5 Noise Robustness

Figure 6 presents the noise sweep results. SDPO’s reward degrades
gracefully from 0.642 (no noise) to 0.628 (¢=0.5), a loss of 2.33%
(computed as (0.642 — 0.628)/0.642). Critically, SDPO maintains its
advantage over REINFORCE at all tested noise levels, with the gap
narrowing modestly from +0.128 (no noise) to +0.125 (6=0.5). No
crossover point was observed in the tested range, contrary to the
intuition that noisy feedback would eventually make SDPO worse
than noise-immune REINFORCE.

The credit assignment correlation degrades more noticeably:
SDPO drops from 0.769 to approximately 0.72 at 0=0.5. However,
even degraded SDPO credit assignment remains far superior to
REINFORCE (~—0.63) and advantage-weighted (~—0.09) baselines,
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Figure 5: Diversity—alignment Pareto frontier. Each point
represents SDPO trained with a different KL regularization
weight A. The gold star marks the default A=0.01. The dashed
line shows REINFORCE’s reward level. All SDPO configu-
rations dominate REINFORCE. Moderate 1 values recover
substantial entropy with minimal reward loss.
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Figure 6: Left: Final mean reward vs. feedback noise. SDPO
(blue) degrades gracefully and maintains its advantage over
REINFORCE (red) at all noise levels. Right: Credit assignment
correlation vs. noise. SDPO’s credit quality decreases with
noise but remains far above baselines.

which are unaffected by feedback noise since they use only the
scalar reward.

3.6 Robustness to Systematic Evaluator Bias

While Gaussian noise models random evaluator inconsistency, real
LLM-as-judge evaluators exhibit systematic biases that are qualita-
tively different. Table 5 and Figure 7 present SDPO’s performance
under three realistic bias types.

SDPO maintains substantial advantages over REINFORCE under
all bias conditions: +0.131 (length bias), +0.139 (positivity bias), and
+0.125 (anchoring bias). These gaps are comparable to or larger than
the clean (no-bias) advantage of +0.121 under continuous feedback,
indicating that systematic biases do not preferentially harm SDPO.

Anon.

Table 5: Performance under systematic evaluator biases. A
denotes SDPO advantage over REINFORCE. SDPO maintains
its advantage under all bias types, with gaps comparable to
the clean condition.

Bias Type = SDPO REINFORCE A

Length 0.642 0.512 +0.131
Positivity 0.648 0.510 +0.139
Anchoring  0.634 0.509 +0.125
Clean 0.636 0.515 +0.121

Robustness to
Systematic Feedback Bias

0.70 A
0.65 - A=+0-131 A=+0.139  t0.125 A=+0.121
ge]
©
[}
o 0.55
©
£ 0.50 . .
L
0.45 A = SDPO
== REINFORCE
0.40 -

Length

Positivity Anchoring Clean

Bias Type

Figure 7: Robustness to systematic feedback biases. Grouped
bars compare SDPO (blue) and REINFORCE (red) reward un-
der three bias types plus clean baseline. Reward deltas an-
notated above bars. SDPO’s advantage is maintained or even
increased under systematic biases.

The credit assignment correlation under bias remains strong:
0.756 (length), 0.767 (positivity), 0.791 (anchoring), compared to
0.769 in the clean condition. Anchoring bias, which concentrates
evaluation weight on the first position, paradoxically yields the
highest credit correlation—the self-teacher’s per-token adjustment
can partially absorb position-specific biases by learning to down-
weight the biased signal.

3.7 Scaling Analysis

All preceding experiments use a single configuration (V=8, T=6).
To assess whether SDPO’s advantage persists at larger problem
scales, we sweep vocabulary size V € {4, 8, 16,32} and sequence
length T € {4, 6,8, 12}, yielding 16 configurations spanning a wide
range of complexity.

Figure 8 and Table 6 present the results. SDPO’s reward ad-
vantage over REINFORCE (A) is positive in all 16 configurations,
confirming that the mechanism generalizes across scales. However,
the advantage diminishes substantially with vocabulary size: mean
A =0.190 at V=4, 0.186 at V=8, 0.117 at V=16, and 0.085 at V=32.
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Table 6: SDPO reward advantage (A) over REINFORCE across
vocabulary size (V) and sequence length (T). SDPO dominates
in all 16 configurations, but the advantage decreases with
vocabulary size.

VAT 4 6 8 12

4 0.281 0.180 0.152 0.148
8 0.219 0.192 0.171 0.165
16 0.128 0.080 0.103 0.156
32 0.090 0.129 0.062 0.060

SDPO Reward A

(SDPO — REINFORCE) ] Scaling Behavior
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o 8~ seq_len=4
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Figure 8: Scaling analysis. Left: Heatmap of SDPO reward
advantage (A) over REINFORCE across vocabulary size and
sequence length. Darker colors indicate larger advantages.
Right: A vs. vocabulary size for each sequence length. The
advantage decreases with vocabulary size but remains posi-
tive in all configurations.

The relationship with sequence length is less systematic, with no
consistent trend across vocabulary sizes.

The scaling trend is consistent with the credit assignment hy-
pothesis: as vocabulary size increases, the per-token advantage sig-
nal becomes weaker (more options to distinguish among), and the
self-teacher’s logit shift (Eq. 2) must distribute its adjustment across
more vocabulary entries. At V=32, T=12—the largest configuration—
SDPO still achieves A = +0.060, a meaningful but diminished ad-
vantage.

3.8 Hybrid Adaptive Method

Figure 9 shows the hybrid method’s behavior under noisy feedback
(0=0.2). The hybrid method’s interpolation weight a evolves adap-
tively during training: starting near 0.5, it shifts toward the SDPO
regime (a > 0.8) as training progresses and the teacher-student
divergence grows.

Under continuous feedback with noise, the hybrid achieves re-
ward 0.632 compared to SDPO’s 0.634 and REINFORCE’s 0.514.
Under critique feedback, the hybrid (0.632) achieves comparable per-
formance to SDPO (0.644). The hybrid consistently achieves inter-
mediate entropy (1.79-1.82), providing a modestly better diversity—-
alignment balance than pure SDPO.

3.9 Statistical Reliability

Figure 10 shows multi-seed validation across 5 random seeds. SDPO
achieves mean reward 0.673 + 0.055 compared to REINFORCE’s
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Figure 9: Hybrid method evaluation under noisy feedback
(0=0.2). Left, middle: reward curves comparing hybrid, SDPO,
and REINFORCE for continuous and critique feedback. Right:
Hybrid alpha trajectory showing adaptive transition from
balanced to SDPO-dominated credit assignment during train-

ing.

5 MuIti-Sged Results (Continuous Feedback, n=5)
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Figure 10: Multi-seed final reward (continuous feedback, n=5
seeds). Error bars show standard deviation. SDPO’s advan-
tage over both baselines is consistent across random seeds,
with the gap exceeding 3 standard deviations of the baseline
distributions.

0.487 + 0.037 and advantage-weighted’s 0.494 + 0.036. The SDPO
advantage (+0.186 mean over REINFORCE) is statistically robust,
exceeding 3 standard deviations of the baseline distribution. SDPO’s
higher variance (+£0.055 vs. £0.037) reflects its sensitivity to the
random reward structure—when the reward landscape is more
amenable to dense credit assignment, SDPO benefits disproportion-
ately.

4 DISCUSSION

SDPO Generalizes to Continuous-Reward Settings. Our results
provide the first systematic evidence that SDPO’s retrospection
mechanism is not limited to verifiable domains. Across all four
feedback types, SDPO achieves +0.12 to +0.15 reward improve-
ment over baselines, with credit assignment quality that improves
monotonically with feedback informativeness. The theoretical con-
nection to SDFT’s implicit reward framework [12] explains this: the
self-teacher’s logit shift (Eq. 2) scales linearly with feedback mag-
nitude f, creating a smooth implicit reward landscape r(y, x,c) =
log (y|x, ¢) — log mx (y|x) that degrades continuously rather than
catastrophically as feedback quality varies.

Diversity Preservation Is Manageable. The 14.3-19.7% entropy re-
duction initially appears concerning for open-ended tasks. However,
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our Pareto frontier analysis reveals that this is not a binary trade-
off: KL regularization provides a continuous knob that recovers
substantial diversity with modest alignment cost. At A=0.05, SDPO
achieves 86.6% of maximum entropy while still outperforming RE-
INFORCE by +0.119 in reward. For practitioners, we recommend
starting with A € [0.02,0.05] and adjusting based on task-specific
diversity requirements.

Robustness Exceeds Expectations. Two aspects of SDPO’s robust-
ness are noteworthy. First, the noise robustness (only 2.33% reward
loss at 0=0.5) likely stems from the averaging effect: noisy feed-
back shifts the teacher distribution stochastically, but across many
rollouts, the average gradient direction remains aligned with the
true advantage. Second, and more surprising, SDPO’s advantage
actually increases under positivity bias (+0.139 vs. +0.121 in clean
conditions). This suggests that the self-teacher can partially absorb
systematic biases through its feedback conditioning, a property not
shared by methods that use the raw scalar reward.

Scaling Poses a Genuine Challenge. The declining advantage from
+0.281 (V=4, T=4) to +0.060 (V=32, T=12) is the most important
finding for practical deployment. At the scale of real LLM vocab-
ularies (V > 30,000), the per-token logit shift may be insufficient
to create meaningful teacher—student divergence. However, three
factors suggest cautious optimism: (1) real LLM policies have much
sharper distributions than the near-uniform initialization used here,
concentrating the effective vocabulary per position; (2) attention
mechanisms enable cross-position credit propagation absent in our
factored model; and (3) the relationship between our simulation’s
V and effective vocabulary size in autoregressive models is not
one-to-one. Nevertheless, validating SDPO’s scaling behavior with
full-scale LLMs remains a critical direction.

Implications for the Alignment Community. Our findings sug-
gest that SDPO can serve as a practical component in alignment
pipelines for open-ended tasks, particularly when feedback is at
least ordinal-quality. The combination of robust performance un-
der noise, resilience to systematic biases, and tunable diversity
preservation makes it a compelling alternative to purely sparse
methods. However, the scaling analysis cautions against assuming
that simulation-level advantages will directly transfer to LLM-scale
deployment without architectural modifications to strengthen the
self-teacher’s signal.

5 CONCLUSION

This simulation study provides the first systematic evidence that
SDPO’s retrospection-based credit assignment mechanism gener-
alizes beyond verifiable domains to open-ended and continuous-
reward settings. Our key findings are:

SDPO works in continuous-reward settings. Across all four
feedback types, SDPO consistently outperforms sequence-level (RE-
INFORCE) and estimated token-level (advantage-weighted) base-
lines by +0.12 to +0.15 in reward. The credit assignment quality
improves monotonically with feedback informativeness (binary <
ordinal < continuous < critique), confirming that the self-teacher
effectively leverages graded feedback structure.

Diversity preservation is manageable via regularization.
SDPO reduces policy entropy by 14.3-19.7% relative to Hmax, but

Anon.

KL regularization sweeps reveal a smooth Pareto frontier: 1=0.05
recovers 86.6% of maximum entropy with only modest reward loss.

SDPO is robust to both random and systematic noise. Feed-
back noise up to 0=0.5 reduces SDPO reward by only 2.33%, and
systematic evaluator biases (length, positivity, anchoring) do not
erode SDPO’s advantage—in some cases, they increase it.

Scaling is the primary challenge. SDPO’s advantage dimin-
ishes from +0.281 to +0.060 as vocabulary size increases from 4 to
32, identifying the self-teacher’s signal strength at large vocabulary
scales as the key bottleneck for LLM-scale deployment.

Limitations and Future Work. Our simulation uses factored
policies (independent per-position distributions) that may not cap-
ture the full complexity of autoregressive LLM generation. The
ground-truth reward function is known, enabling precise credit
measurement—real tasks lack this. Key directions for future work
include: (1) validating these findings with full-scale LLM training on
open-ended benchmarks such as AlpacaEval and MT-Bench; (2) de-
veloping architectural modifications to strengthen the self-teacher
signal at large vocabulary scales, such as vocabulary-subspace con-
ditioning; and (3) investigating mixture-of-teacher approaches that
combine multiple feedback sources to improve diversity preserva-
tion.
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