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The Credit Assignment Bottleneck in Current RLHF

CURRENT PARADIGM (Sparse Reward)
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PPO/DPO: Signal is diffuse.

REQUIRED SHIFT (Dense Credit)
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Target State: Signal is specific to the token.



SDPO Creates Dense Signal via Feedback-
Conditiorned Retrospection

The Mechanism: SDPO conditions Student Logits Feedback (f)
the model on external feedback ..

(like an error message or critique)
to temporarily create a “Self-
Teacher”.

The Distillation: The
unconditioned "Student” policy
Is then trained to match this
superior Teacher distribution via
token-level KL divergence.

Conditioning

KL Minimization
Update Teacher Logits

fteacher = estudent e /8 : f X Q(ta U)




The Open Question: Can Retrospection Work
Without Ground Truth?

Verifiable Tasks (Code) Open-Ended Generation (Language)

- Binary Success/Fail - Subjective Quality
- Compiler = Ground Truth - Continuous/Ordinal Rewards
- Proven Success - No Ground Truth Verifier

HYPOTHESIS: Can SDPO survive
here?



A Controlled Simulation Framework

to Isolate the Mechanism
Modeling the full RLHF pipeline with known ground-truth parameters.
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Stress-Testing Across Four Regimes
of Feedback Informativeness

Low Info <}:{> High Info

Binary Ordinal Continuous Critique

Pass/Fail threshold 1-5 Likert scale. Raw scalar reward. Continuous score
at 0.5. + per-token hints.
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ALl oracles tested with Gaussian noise to simulate human inconsistency.



SDPO Consistently Outperforms Baselines
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Modern Scientific Editorial

Rapid Convergence and Sustained Advantage

Binary Feedback
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Early separation of the SDPO line demonstrates rapid learning, maintaining a performance advantage across all feedback regimes.
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The Mechanism Verified: Superior Credit Assignment
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The Trade-off: SDPO Reduces Policy Diversity
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Insight: The ‘Self-Teacher’ distribution is sharp, causing the student to

collapse towards the mode, reducing variety by ~15-20%.
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Tuning the Pareto Frontier
Recovers Diversity

0.65 A=0.001 Max Entropy

= 0.6

— e

< Crimson Prot: Recovers
i 86% diversity with only
e 1.2% reward drop.

(©

£ 0.55- A=0.05

LL

REINFORCE Reward

_—_—_—_—_——_—______—_—_—_—_—_—_—-——_—_—_—_-

A=0.1

7 1] e 1k 4 2.0
Final Entropy



Graceful Degradation Under
Feedback Noise

Final Mean Reward vs. Feedback Noise Std Dev
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No Crossover Point. Even with 50% noise, SDPO remains superior to baselines.



Theoretical Grounding: Implicit Rewards and SDFT

-

SDPO creates a smooth reward landscape
defined by:

Implicit Reward Landscape

r(y,x,c) =logr(y|x,c) — Logmc(y|x)

» Conditioning on continuous feedback

. I

¢’ creates a smooth function.

* Noise perturbs the landscape but does
not destroy the gradient direction.

» Result: Graceful degradation instead of
collapse.




Robustness to Systematic Evaluator
Biases

= Final Reward vs. Evaluator Bias Type
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Surprising Result: SDPO’s advantage increases under Positivity Bias.



The Scaling Challenge: Advantage Diminishes with Complexity
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A Hybrid Method for Heterogeneous Feedback Quality

Check Teacher-Student
KL Divergence
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Statistical Reliability Across Random Seeds
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Summary of Findings

D

Generalization Dense Credit
Works for open-ended, continuous- Correctly identifies high-value tokens
reward tasks, not just code. where baselines falil.
-O0—
—O-
Robustness Trade-offs
Handles 50% noise and systematic Diversity loss is real but tunable via

biases without failure. KL regularization.



Verdict: A Viable Candidate for Open-Ended Alignment

SDPO offers a path away from
the “Sparse Reward” trap.

Benchmark Architectural Hybrid
Validation Mods Deployment
(AlpacaEval, (Subspace conditioning (Combining with
MT-Bench) for large vocabularies) REINFORCE)

With scaling solutions, dense credit assignment
is within reach for open-ended generation.



