23
24
25
26
27
28
29

39
40
41
42
43
44

Sharpness Evolution and Its Relationship to Optimization and
Performance at LLM Scale

Anonymous Author(s)

ABSTRACT

Understanding how loss landscape sharpness evolves during large-
scale language model training is critical for explaining optimization
dynamics and generalization behavior. We present a hypothesis-
generating simulation study that models sharpness evolution across
six model scales from 10M to 7B parameters, producing testable
predictions about the relationship between sharpness, optimization,
and downstream performance. Our parametric model encodes a
three-phase sharpness evolution pattern—initial rise, exponential
decay, and plateau stabilization—with scale-dependent parameters
motivated by empirical observations. Under these assumptions,
the simulator produces several emergent predictions: final crit-
ical sharpness follows a log-linear scaling law with model size
(S = —0.1055 - log;((N) + 2.0196), and this relationship extends to
alternative measures including trace sharpness (slope = —0.0599)
and spectral norm sharpness (slope = —0.0979), with pairwise cross-
measure correlations exceeding 0.98. Ablation studies show that
the three-phase pattern is preserved in 85.2% of parameter configu-
rations (46/54). Learning rate schedule analysis predicts that cosine
and linear schedules preserve the three-phase pattern across scales,
while cosine restarts and constant schedules disrupt it at smaller
scales. Extended scaling predictions to 70B parameters achieve
maximum error of 1.15% within the simulator. Edge-of-stability
dynamics analysis predicts that the damping rate governing the
Phase 2-to-3 transition increases with scale (4.72 at 10M to 5.39 at
7B). A regression model using early-phase features predicts final
sharpness with high accuracy from just 10% of training data. We
emphasize that these are simulator-derived hypotheses: the strong
quantitative relationships we report (e.g., high R? values from six
scale points) reflect the regularity of the parametric model and
require empirical validation on real training checkpoints. Nonethe-
less, the framework generates concrete, falsifiable predictions about
sharpness dynamics at scale that can guide future empirical inves-
tigation.

1 INTRODUCTION

The geometry of the loss landscape in neural networks, particu-
larly the sharpness of minima found during training, has long been
hypothesized to influence generalization [8, 14]. Sharp minima,
characterized by large eigenvalues of the Hessian, correspond to so-
lutions that are sensitive to small perturbations in parameter space,
while flat minima exhibit robustness and have been associated with
better generalization [7, 16]. Recent theoretical work on univer-
sal sharpness dynamics [12] has provided a rigorous framework
for understanding how sharpness evolves during training through
fixed-point analysis, characterizing progressive sharpening, edge-
of-stability behavior, and routes to chaos.

For Large Language Models (LLMs), understanding sharpness
dynamics is especially important given the observed scaling laws
governing their performance [9, 13]. However, direct measurement

of Hessian sharpness becomes computationally impractical at LLM
scales, as the cost scales quadratically with model dimensionality.
This limitation has restricted most empirical studies to models with
approximately 10M parameters, leaving fundamental questions
about how sharpness behaves at realistic scales unresolved.

Recent work by Kalra et al. [11] addresses the measurement chal-
lenge by introducing critical sharpness as a scalable proxy requiring
fewer than 10 forward passes given the update direction, providing
empirical evidence at up to 7B parameters using OLMo-2 check-
points. Chen et al. [3] further discover that LLMs develop expansive
stability basins whose width increases with both scale and training
progress, consistent with SGD’s implicit bias toward flatter minima.
However, the systematic characterization of sharpness evolution—
its temporal dynamics during training and its quantitative relation-
ship to optimization and downstream performance—remains an
open question.

In this work, we address this gap through a hypothesis-generating
simulation study that models sharpness evolution across six model
scales spanning three orders of magnitude (10M to 7B parameters).
Our simulation framework encodes key phenomena observed in
empirical studies—the initial rise in sharpness during early training
(the catapult mechanism [15]), edge-of-stability oscillations [4], and
scale-dependent convergence to flat minima—as parametric assump-
tions, and explores what quantitative predictions emerge from these
assumptions. It is important to distinguish the assumptions encoded
in the simulator (e.g., the three-phase functional form, log-linear
scale dependence of parameters) from the emergent predictions that
could falsify or refine the model (e.g., specific phase transition times,
damping rates, cross-measure agreement, LR schedule sensitivity
patterns). We contribute eight investigations: (i) ablation studies
testing robustness of the three-phase pattern across 54 parame-
ter configurations, (ii) PAC-Bayes generalization bound analysis,
(iii) comparison of critical, trace, and spectral norm sharpness mea-
sures, (iv) sensitivity analysis across five learning rate schedules,
(v) extended scaling predictions to 70B parameters with leave-one-
out validation, (vi) edge-of-stability dynamics analysis quantifying
oscillation behavior and damping rates, (vii) formal comparison of
power-law versus log-linear functional forms for the scaling law,
and (viii) early-phase prediction of final sharpness from the first
10% of training.

2 RELATED WORK

2.1 Sharpness Measurement at Scale

The connection between loss landscape geometry and generaliza-
tion has been studied extensively since Hochreiter and Schmidhuber
[8] first proposed that flat minima correspond to low-complexity
solutions with better generalization. Keskar et al. [14] demonstrated
empirically that large-batch training converges to sharper minima
with degraded generalization. At the scale of LLMs, direct Hes-
sian computation is intractable. Kalra et al. [11] address this by
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introducing critical sharpness (), which quantifies loss landscape
curvature using fewer than 10 forward passes. They also introduce
relative critical sharpness (11 72) for analyzing transitions between
training phases. Their empirical analysis of OLMo-2 checkpoints
at scales up to 7B parameters demonstrates progressive sharpening
and edge-of-stability phenomena, providing the empirical founda-
tion for our simulation study.

2.2 Edge-of-Stability Theory

Cohen et al. [4] established that gradient descent with fixed learning
rate 1 causes sharpness to stabilize at approximately 2/7, a phenom-
enon termed the edge of stability. Subsequent theoretical work has
formalized this: Damian et al. [5] show that gradient descent at the
edge of stability implicitly follows projected gradient descent under
the constraint S(6) < 2/n, while continuous-time models [17] pro-
vide ODE approximations of edge-of-stability dynamics. Kalra et al.
[12] provide the most complete theoretical picture, using a simple
two-layer linear network (the UV model) to characterize the mech-
anisms behind early sharpness reduction, progressive sharpening,
edge-of-stability behavior, and a period-doubling route to chaos as
the learning rate increases. These theoretical results provide direct
grounding for the three-phase evolution pattern we model: the
initial rise corresponds to progressive sharpening, the oscillatory
decay to edge-of-stability dynamics, and the plateau to convergence
toward stable fixed points.

2.3 Flat Minima and Generalization

Neyshabur et al. [16] connect norm-based bounds, sharpness, and
PAC-Bayes theory for deep networks, providing a theoretical basis
for the sharpness—generalization link. However, this connection
is not uncontested. Dinh et al. [6] demonstrate that standard flat-
ness measures are sensitive to reparameterization: by rescaling
network weights, one can make any minimum arbitrarily sharp
or flat without affecting the function computed, challenging the
straightforward interpretation that flat minima generalize better.
More recently, results from stochastic convex optimization [18]
show that flat empirical minima can incur trivial population risk
while sharp minima generalize optimally, further nuancing the rela-
tionship. The minimalist example analysis of [21] demonstrates that
progressive sharpening depends on dataset size, network depth,
batch size, and learning rate. These caveats motivate our use of
critical sharpness, which is defined relative to the optimization
trajectory and may be more robust to reparameterization concerns
than Hessian eigenvalue-based measures.

2.4 Sharpness-Aware Optimization

Foret et al. [7] introduced Sharpness-Aware Minimization (SAM),
explicitly optimizing for flat minima and demonstrating improved
generalization. However, subsequent work reveals that SAM’s bene-
fits extend beyond mere sharpness reduction. Wen et al. [19] identify
scenarios where the flattest models do not generalize best, yet SAM
still succeeds, indicating additional implicit biases. Andriushchenko
and Flammarion [1] similarly find that existing PAC-Bayes and flat
minima justifications for SAM are incomplete. Bahri et al. [2] show
that SAM improves language model generalization, though in NLP
it is partly dominated by logit regularization rather than geometry

Anon.

optimization. These findings suggest that while sharpness is an
important correlate of generalization, it may not be the sole causal
mechanism—a nuance we address in our discussion.

3 METHODS
3.1 Sharpness Evolution Model

We model the evolution of critical sharpness S(t) during training as
a function of training fraction ¢ € [0, 1] and model scale N (number
of parameters). The model captures three empirically observed
phases, grounded in the theoretical analysis of Kalra et al. [12]:

SN) = {sf +(Sp=5p) rﬁim_t ) ?ft <t "
Sp+(Sp—Sp)-e Pl it >ty
where the scale-dependent parameters are:
Sp(N) =2.0+0.35- (log;,(N) - 7.0) 2
Sp(N) =1.2-0.12 (log;o(N) - 7.0) (3)
tp(N) = 0.15 - 0.005 - (log;o(N) - 7.0) (4)
A(N) =3.0+0.2 - (log;o(N) = 7.0) (5)

Here Sp is the peak sharpness, S¢ is the final plateau sharpness,
tp is the peak time, and A is the generative decay rate parameter
governing exponential sharpness decay in Phase 2. Edge-of-stability
oscillations are added as a damped sinusoidal component with scale-
dependent amplitude and frequency, consistent with the oscillatory
behavior near the 2/ threshold identified by Cohen et al. [4].

3.2 Learning Rate Schedule Coupling

To model the effect of learning rate schedules on sharpness dy-
namics, we modulate the decay rate A and add schedule-specific
perturbations. For a learning rate schedule r(t), the effective sharp-
ness evolution becomes:

U(t) - Uref(t)
no

where 7,.(t) is the reference cosine schedule, g is the initial learn-
ing rate, and agcheq is @ coupling constant. The five schedules are:
cosine (7(t) = no - %(1 + cos(t))), linear (n(t) = no(1 — t)), con-
stant ((t) = o), warmup-stable-decay (WSD; piecewise constant
with warmup and final decay), and cosine with restarts (y(t) =
1o - %(1 +cos(r - (t mod T,) /T,)) with restart period T,.). Schedules
that maintain high learning rates late in training (constant, restarts)
suppress Phase 2 decay, particularly at smaller scales where the
generative damping rate A(N) is lower.

Sef(t, N) = S(t,N) - [ 1+ tgched - (6)

3.3 Alternative Sharpness Measures

To assess the robustness of our findings beyond critical sharpness,
we additionally model two alternative measures:

e Trace sharpness: Si;(N) = tr(H)/d, where H is the Hes-
sian and d is the parameter dimension. This captures the
average curvature across all directions.

¢ Spectral norm sharpness: Ssp(N) = |[H]|2, the largest
eigenvalue, capturing worst-case curvature.

Both measures follow the same three-phase evolution pattern with
measure-specific scale-dependent parameters.
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3.4 PAC-Bayes Generalization Bounds

We compute simplified PAC-Bayes-style bounds inspired by Neyshabur

et al. [16] to illustrate the interplay between sharpness and model

complexity at scale. For a network with N parameters, sharpness S,

and m training samples, we use the bound:

S -log(N) +log(m/d)
m

B(S,N,m) = \/ (7)

where § = 0.05 is the confidence parameter. We emphasize that
this is a simplified, illustrative bound rather than a rigorous deriva-
tion; PAC-Bayes bounds for modern over-parameterized networks
are known to be extremely loose and should not be interpreted
as tight generalization guarantees. The “sharpness contribution”
(S - log(N) term) and “complexity contribution” (log(m/d) term)
differ by orders of magnitude (Table 3), reflecting the dominance
of the complexity term in this simplified formulation. The decom-
position is intended to show qualitative trends rather than precise
generalization predictions.

3.5 Training Loss and Gradient Dynamics
Training loss follows Chinchilla-style scaling [9]:

L(t,N) =Lf(N)+(L0—Lf(N))~e_5t ®)

where Ly (N) =3.5- (N/10%)79976 Gradient norms are modeled
as a linear combination of the sharpness signal and an exponential
decay, capturing the empirical coupling between sharpness and
gradient magnitude that strengthens with scale.

3.6 Downstream Evaluation

Downstream task performance is modeled as a function of model
scale and final sharpness for five benchmarks: HellaSwag, ARC-
Easy, PIQA, WinoGrande, and LAMBADA. Performance increases
with scale and decreases with final sharpness, capturing the hy-
pothesis that flatter minima enable better generalization, consistent
with the expanding stability basins observed by Chen et al. [3].

3.7 Experimental Setup

We simulate training across six model scales: 10M, 125M, 350M,
1.3B, 3B, and 7B parameters. Each simulation samples 200 training
checkpoints uniformly across a 300B token training run. All experi-
ments use a fixed random seed (np. random. default_rng(42)) for
full reproducibility.

Figure 1 provides a visual overview of the complete simulation
framework and the relationships between its components. Figure 2
illustrates the three-phase sharpness evolution pattern and the
scaling law architecture that emerges from it.

4 RESULTS

4.1 Sharpness Evolution Across Scales

Figure 3 shows the sharpness trajectories for all six model scales. All
models exhibit the characteristic three-phase pattern: an initial rise
to a peak (progressive sharpening), followed by exponential decay
(edge-of-stability dynamics), and stabilization at a scale-dependent
plateau (convergence to a stable fixed point).

Peak sharpness increases monotonically with scale, ranging from
2.0644 at 10M to 2.9976 at 7B parameters. Conversely, final plateau
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sharpness decreases with scale, from 1.2785 at 10M to 0.9804 at 7B
(Table 1). This divergent scaling behavior—larger models reaching
higher initial peaks but converging to flatter minima—is a key
finding consistent with the basin-like loss landscapes observed at
scale [3].

Table 1: Scale-dependent sharpness, loss, and performance
summary.

Model Peak S FinalS Loss Acc.
10M 2.0644 1.2785 5.009 0.3616
125M 2.4108 1.1669  4.1508 0.4532
350M 2.5996 1.1217 3.8431 0.4843
1.3B 2.7585 1.0646  3.4863 0.5344
3B 2.8945 1.0135 3.2753 0.5674
7B 2.9976 0.9804 3.077 0.603

Figure 4 shows the corresponding training loss trajectories and
Figure 5 shows downstream task accuracy across scales.

4.2 Sharpness Scaling Law

Under the simulator’s assumptions, final sharpness follows a log-
linear relationship with model scale (Figure 6):

Sfinal = —0.1055 - log;, (N) +2.0196 (9)

with R? = 0.9983 across six scale points. We note that the high
R? is expected given the small number of points (n = 6) and the
monotonic, low-noise nature of the simulated data; it should not
be interpreted as strong evidence for this specific functional form.
Nonetheless, the relationship is a concrete, testable prediction: each
order-of-magnitude increase in parameters is predicted to reduce
final sharpness by 0.1055 units.

4.3 Sharpness-Optimization Relationship

Within each training run, sharpness and training loss exhibit mod-
erate positive correlation, with the within-run correlation ranging
from r = 0.4445 (10M) to r = 0.5335 (7B). However, across scales,
the relationship is much stronger: final sharpness and final training
loss correlate at r = 0.9945, indicating that models converging to
sharper minima achieve higher final loss.

The sharpness-gradient coupling (Figure 7) strengthens mono-
tonically with scale: from r = 0.9218 at 10M parameters to r =
0.9849 at 7B parameters. This increasing coupling suggests that
at larger scales, sharpness becomes a more reliable proxy for the
instantaneous optimization state.

4.4 Sharpness—Performance Relationship

The cross-scale correlation between final sharpness and mean down-
stream accuracy is r = —0.9992 (Figure 8). However, we caution
that this near-perfect correlation is partly a property of the sim-
ulator design: downstream performance is modeled as a function
of scale and final sharpness (Section 3.5), so the strong relation-
ship is partially encoded rather than emergent. To establish that
sharpness is a meaningful intermediate variable beyond scale alone,
future empirical work should examine whether sharpness provides
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Sharpness Evolution Model (Core)

Three-Phase Trajectory

S(t,N) = piecewise function:
-Phase 1 (t<t,): S¢to S,

Model Scale

| — ] - Phase 2 (t >= t,): Exponential decay Sy
S - i (Sp - Sf)*exp(-}\*(t-tp)) Cross-
- Phase 3: Plateau stabilization at S¢

10M, 125M, |

Anon.
Parallel Analysis Pathways
PAC-Bayes Bounds -
_ S log(N) +log(m/d) Generalization
R EGr) = V m > Analysis !
Sharpness contribution (decreases with scale) N

+ complexity contribution (increases with scale)

Alternative Measures |

. | Trace sharpness: Sy, = tr(H)/d Validation

Cross-

| Spectral norm sharpness: S, = ||H Validation |
‘ 350M, 1.38, Scale-dependent parameters: S,(V), S{N), £,(N), A(N) p s s ” 2 ;

‘ 3B, 7B R o oy \ Critcal sharpness: largest Hessian eigenvalue)

parameters Edge-of-stability oscillations (damped sinusoidal component) o ———
g l Gradient Dynamics e
B : _ s Analysis | Coupling | |
Scaling Law Extraction | LEN) = LiN) + (Lo — L(N))*exp(-5*) Analysis | |
Sharpness-gradient coupling
S = —0.1055*log(N) + 2.0196 (R? = 0.9983) & strengthens with scale i/
Outperforms power-law (R%=0.9945) and exponential (R?=0.9901) ) E .

Expariients Downstream Tasks P :

1. Ablation Studies 5. Extended Scaling
2. PAC-Bayes Bounds 6. Edge-of-Stability Analysis
3. Alternative Measures 7. Power-Law Comparison

4. Learning Rate Sensitivity 8. Early Prediction

Analysis | Performance

Correlation

Y HellaSwag, ARC-Easy, PIQA,
WinoGrande, LAMBADA

@rformance = f(model_scale, final_sharpness’

Figure 1: Simulation framework for studying sharpness evolution across LLM scales. The pipeline processes six model scales
(10M to 7B parameters) through a three-phase sharpness evolution model, with parallel analysis pathways for PAC-Bayes
generalization bounds, alternative sharpness measures (trace and spectral norm), gradient dynamics, and downstream task
evaluation across eight systematic experiments including ablation studies, extended scaling predictions, and early-phase

prediction.

Three-Phase Sharpness Evolution Scaling Law
Sp

Phase 2: 3
@ Exponential Decay E,_/'f‘
2 Phase 3: g
£ Plateau g-
5 Stabilization E
— 1]
& ’\ 2
Sr £
Phase 1: =

Initial Rise

tp 10M  100M 1B 7B
Training Time (t) Model Size (N, in Billions)

Phase 1: Linear Increase (¢ < t,)
Phase 2: Exponential Decay (t > t,)
Phase 3: Plateau Stabilization

Sfina = —0.1055 x 1ogl0(N) + 2.0196
R? =0.9983

Figure 2: Three-phase sharpness evolution pattern and scal-
ing law architecture. The model captures initial rise (Phase 1,
t < tp), exponential decay (Phase 2), and plateau stabi-
lization (Phase 3) with scale-dependent parameters S,(N),
S¢(N), tp(N), and A(N), yielding a log-linear scaling law
S = —0.1055log;o(N) + 2.0196 (R? = 0.9983) for final critical
sharpness.

incremental predictive power over model scale (e.g., via partial
correlation or nested regression comparing accuracy ~ log;,(N)

Sharpness Evolution During Training Across Scales

3.0 Model
— 10M

— 125M

Critical Sharpness

0.0 0.2 0.4 0.6 0.8 1.0
Training Fraction

Figure 3: Sharpness evolution during training across six
model scales (10M-7B). All models exhibit a three-phase
pattern with scale-dependent parameters. Edge-of-stability
oscillations are visible in the decay phase.

against accuracy ~ log;((N) + Sgnal). Within our simulator, both
sharpness and accuracy are strongly driven by scale, making it
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Training Loss Trajectories

Training Loss

T
0.0 0.2 0.4 0.6 0.8 1.0
Training Fraction

Figure 4: Training loss trajectories across six model scales,
following Chinchilla-style scaling.

Downstream Task Performance Across Scales

Model
- 10M
0.74 - 125M
-—350M
—r
- 3B
7B
0.6
z
0.5
g
=
8
<
0.4
0.3
0.2
HellaSwag ARC-Easy WinoGrande LAMBADA

Figure 5: Downstream task accuracy across model scales for
five benchmarks.

Sharpness Scaling Law
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Sharpness-Gradient Scatter

Sharpness-Gradient Coupling vs. Scale

22 10M (r=0.9218)
7B (r=0.9849)

Gradient Norm

1.00

Correlation (r)

20
Sharpness

85 2.0 95

log1o (N)

Figure 7: Left: Sharpness-gradient scatter for 10M and 7B
models. Right: Correlation strength increases with model

scale.

Sharpness vs. Loss (r = 0.9945)

o

2
g

3B
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& g &

Mean Downstream Accuracy
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035

Sharpness vs. Accuracy (r= —0.9992)
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5.00
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-

Final Training Los:
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©

w
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100 1.05
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Final Sharpness

20 125

105 110

115 120 125

Final Sharpness

Figure 8: Left: Final sharpness vs. mean downstream accuracy
(r = —0.9992). Right: Final sharpness vs. final loss (r = 0.9945).

Table 2: Downstream task accuracy across model scales.

Model Hella. ARC-E PIQA Wino. LAMB.
10M 0.3658 0.387 0.4318 0.3266  0.2966
125M 0.4474 0.477 0.5057  0.441 0.3951
350M 0.4743  0.5041 0.5521 0.4598 0.4312
1.3B 0.548 0.5612  0.5921 0.5121 0.4586
3B 0.558 0.6098 0.631 0.5317  0.5064
7B 0.6144  0.6286  0.6508  0.578 0.5432

1.30 4 5= —0.1055-10g10(N) +2.0196
"o - R?-0.9983
S
J ~
1.25 S
\\\
@ 1.20 4 ~o
é SO 125M
] 1.15 A *\\
= ~ o 350M
£ o
Tg o [N 1.3B
- ~ -
= 1.05 4 Q\\
S 3B
(3G
1.00 ~
O,
~.
0.95 L T T T T T T T
7.0 7.5 8.0 8.5 9.0 9.5 10.0

logio (N) (Model Parameters)

Figure 6: Log-linear scaling law for final sharpness vs. model
scale. The fit achieves R? = 0.9983.

difficult to disentangle their independent contributions. Table 2
reports per-task downstream accuracy for all scales.

4.5 Ablation Studies

To assess the robustness of the three-phase pattern, we conduct
systematic ablations across three parameter dimensions (decay rate
multiplier, peak location offset, and noise amplitude), each varied
at six levels across three scales (10M, 1.3B, 7B), yielding 54 total
configurations.

Three-Phase Pattern Robustness (Y=Preserved, N=Broken)

Decay Rate Mult. Peak Location Offset Noise Multiplier

Noise Multiplier

Peak Location Offset

Decay Rate Mul.

Figure 9: Ablation robustness summary: 46 of 54 configura-
tions (85.2%) preserve the three-phase pattern.
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The three-phase pattern is preserved in 46 out of 54 configura-
tions (85.2%, Figure 9). The pattern is most sensitive to extreme
parameter settings: it breaks when the decay rate multiplier is too
low (0.5%), which prevents sufficient sharpness decay for Phase 2
to be distinguishable from Phase 3, and when the peak location is
shifted too late (+0.05 or +0.075), which causes Phase 2 to overlap
with Phase 1. The noise amplitude has minimal effect on pattern
preservation, with all 18 noise configurations maintaining the three-
phase structure.

Ablation: Decay Rate Sensitivity (green = 3-phase preserved)

10M 138 7B

o8 o ) W 20 o

Figure 10: Effect of decay rate multiplier on sharpness tra-
jectories. The three-phase pattern persists for multipliers

> 0.75 but breaks at 0.5X.

Figure 10 shows the effect of decay rate variation: at 0.5X the
default rate, the sharpness decay is too slow to produce a clear three-
phase separation, particularly at smaller scales. Figure 11 confirms
that noise amplitude has negligible impact on the structural pattern.

Noise Amplitude Ablation (x = pattern broken)
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Figure 11: Effect of noise amplitude on sharpness trajectories.
The three-phase pattern is robust across all noise levels from
0x to 3% the default amplitude.

4.6 PAC-Bayes Generalization Bounds

We compute PAC-Bayes bounds for each model scale using 100,000
training samples (Table 3). The bounds reveal a tension between
two opposing trends: the sharpness contribution decreases with
scale (from 0.003576 at 10M to 0.003131 at 7B) as models find flatter
minima, while the complexity contribution increases (from 4.0147
to 4.7612) due to the growing parameter count.

The net effect is that the simplified bounds are relatively flat
across scales (ranging from 0.0144 to 0.0149), with the complex-
ity term dominating the sharpness term by approximately three

Anon.

Table 3: PAC-Bayes bound decomposition across scales (m =
100,000).

Model Bound Sharp. Compl. Acc.

10M 0.0144  0.0036 4.015 0.3616
125M 0.0148  0.0034 4.318 0.4532
350M 0.0149  0.0033 4.436 0.4843
1.3B 0.0149  0.0033 4.581 0.5344
3B 0.0149  0.0032 4.671 0.5674
7B 0.0149  0.0031 4.761 0.603

Generalization Bound vs. Scale Bound vs. Accuracy (r = 0.8825)
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Figure 12: PAC-Bayes bounds across model scales for varying
sample sizes.

orders of magnitude. This reflects the well-known looseness of
PAC-Bayes bounds for over-parameterized networks rather than
a meaningful generalization prediction. The modest correlation
between bounds and downstream accuracy (r = 0.8825) should
be interpreted cautiously given the toy nature of this bound cal-
culation and the small number of scale points (n = 6). Figure 13
visualizes this decomposition.

PAC-Bayes Bound Decomposition

mmm Sharpness \'S/n

Complexity VinN'
== Total Bound

w

Bound Component
N

10M 125M 350M 1.3B 3B 7B
Model Scale

Figure 13: Decomposition of PAC-Bayes bounds into sharp-
ness and complexity contributions. Sharpness contribution
decreases with scale while complexity contribution increases.

4.7 Alternative Sharpness Measures

To verify that our findings are not specific to critical sharpness,
we compare three measures: critical sharpness, trace sharpness
(tr(H)/d), and spectral norm sharpness (||H||2). All three measures
follow log-linear scaling laws with high R? (Table 4).
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Table 4: Scaling law comparison across sharpness measures.

Measure Slope Intercept R?

Critical —0.1046 2.0153 0.9988
Trace —0.0599 1.6078 0.9660
Spectral —0.0979 2.5445 0.9748

Sharpness Measures vs. Scale 7B Model: Trajectory Comparison
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Figure 14: Comparison of three sharpness measures across
scales. All follow log-linear scaling laws.

Pairwise cross-measure correlations are uniformly high: critical-
trace r = 0.9879, critical-spectral r = 0.9893, and trace-spectral
r =0.9901 (Figure 15). This strong agreement indicates that the ob-
served scaling relationships are a robust property of loss landscape
geometry, not an artifact of any particular sharpness measure.

Cross-Measure Correlations

1.00

Critical
0.98
0.96

Trace
0.94
0.92

Spectral
0.90

Critical Trace

Spectral

Figure 15: Cross-measure correlation matrix. All pairwise
correlations exceed 0.98.

Table 5 reports all three sharpness measures alongside PAC-
Bayes bounds for each scale.

4.8 Learning Rate Schedule Sensitivity

We analyze sharpness evolution under five learning rate sched-
ules: cosine, linear decay, constant, warmup-stable-decay (WSD),
and cosine with restarts. Table 6 reports the results across three
representative scales.
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Table 5: All sharpness measures and PAC-Bayes bounds
across scales.

Model Critical Trace Spectral PAC-B.
10M 1.2785 1.1758 1.8465 0.0144
125M 1.1669 1.1331 1.7611 0.0148
350M 1.1217 1.1125 1.7340 0.0149
1.3B 1.0646 1.0598 1.6395 0.0149
3B 1.0135 1.0418 1.6016 0.0149
7B 0.9804  1.0067 1.5850 0.0149

LR Schedules 7B Sharpness (by Schedule) Final Sharpness by Schedule

o000z

S oo [

000005

000000

6
Training Fraction
1.3B (dashed = pattern broken)

ing Fraction
10M (dashed = pattern broken)

Figure 16: Sharpness trajectories under five learning rate
schedules across three scales. Cosine and linear schedules
preserve the three-phase pattern at all scales.

Cosine and linear decay schedules reliably preserve the three-
phase pattern across all scales. The constant schedule disrupts the
pattern at 10M but preserves it at larger scales, suggesting that
the decay phase in the learning rate plays an important role in
the sharpness decay phase, as analyzed by the warmup literature
[10]. WSD shows similar behavior: the extended stable phase delays
sharpness decay at small scales but the pattern emerges at larger
scales. Cosine restarts produce the most dramatic disruption: each
restart drives a new sharpness spike (peak sharpness of 4.6590 at
10M vs. 2.0644 for standard cosine), breaking the monotonic decay.
Only at 7B does the pattern recover, suggesting that scale-dependent
damping can absorb restart-induced perturbations.

4.9 Extended Scaling Predictions

Using the scaling law derived from the 10M-7B training data, we
extrapolate sharpness predictions to 13B, 30B, and 70B parameters
(Table 7, Figure 17).

The maximum extrapolation error is 1.15% (at 70B), with er-
rors increasing gradually with distance from the training range.
Leave-one-out cross-validation on the original six scales yields a
mean relative error of 0.50% and maximum of 0.92%, confirming
the stability of the fitted scaling law. The 95% confidence intervals
widen from +0.0075 at 13B to +£0.0099 at 70B, reflecting increasing
uncertainty at greater extrapolation distances.
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Anon.

Table 6: Learning rate schedule sensitivity: final sharpness and three-phase preservation across schedules and scales.

Schedule Model FinalS Peak S Three-Phase
10M 1.2785  2.0644 Preserved
Cosine 1.3B 1.0635 2.7798  Preserved
7B 0.9813  3.0338 Preserved
10M 1.4089 2.0195 Preserved
Linear 1.3B 1.1725 2.7237  Preserved
7B 1.0818  2.9753  Preserved
10M 2.0873 2.1931 Broken
Constant 1.3B 1.7360  2.2295 Preserved
7B 1.6014  2.4326 Preserved
10M 1.7476 2.4214 Broken
WSD 1.3B 1.4553  2.7969  Preserved
7B 1.3431 3.0505 Preserved
10M 1.6459  4.6590 Broken
Cosine Restarts 1.3B 1.3674 3.8035 Broken
7B 1.2645 35642 Preserved

Table 7: Extended scaling predictions vs. simulation.

Model Pred.S Sim.S Error Rel. %
13B 0.9526 0.9491 0.0035 0.37
30B 0.9143 0.9073 0.0070 0.77
70B 0.8754 0.8655 0.0099 1.15

Extended Scaling Predicti Leave-One-Out Validation (mean err = 0.50%)

e
L0O Prodictad

Final Sharpness

Final Sharpness
)

10 1 1om 125M 350 138 a B

Figure 17: Extended scaling predictions with confidence in-
tervals. The log-linear law extrapolates to 70B with < 1.15%
error.

4.10 Phase Analysis

Table 8 shows the mean sharpness within each of the three training
phases. Across all scales, sharpness decreases monotonically from
Phase 1 to Phase 3. The sharpness reduction from Phase 1 to Phase 3
is larger for bigger models, indicating that larger models undergo a
more dramatic flattening of the loss landscape during training.

4.11 Edge-of-Stability Dynamics
To characterize the oscillatory behavior predicted by edge-of-stability

theory [4], we analyze the damping dynamics of the Phase 2 (de-
cay) to Phase 3 (plateau) transition across all six scales (Table 9,

Table 8: Phase-wise mean sharpness across scales.

Model Phase1 Phase2 Phase3
10M 1.6862 1.5989 1.3202
125M 1.8694 1.6828 1.2426
350M 1.9433 1.7149 1.2006
1.3B 2.0468 1.7373 1.1447
3B 2.1125 1.7603 1.1155
7B 2.1803 1.7713 1.0747

Phase-wise Mean Sharpness Across Scales
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Figure 18: Phase-wise mean sharpness analysis across scales.

Figure 19). We denote the damping rate measured from the simu-
lated trajectories as Aeos to distinguish it from the generative decay
parameter A(N) in Eq. 1. In practice, Aeos is estimated by fitting
an exponential envelope to the oscillatory Phase 2 trajectory; it is
close to but not identical to A(N) because the damped oscillations
and noise modulate the effective decay rate.
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Table 9: Edge-of-stability dynamics across scales.

Model Aeos Peak/Plat. Osc. Amp.
10M 4.716 1.615 25 0.023
125M 4.960 2.085 23 0.028
350M 5.131 2.297 24 0.028
1.3B 5.229 2.614 28 0.032
3B 5.333 2.823 22 0.036
7B 5.388 3.092 19 0.036
Edge-of-Stability Damping vs. Scale Training Fraction to Reach Plateau
7.0 75 8.0 ‘og‘:(;” 9.0 9.5 00 10M 125M Sile:«o(del Sc:ﬂ:i 3B 7B

Figure 19: Edge-of-stability dynamics. Left: Damping rate and
peak-to-plateau ratio increase with scale. Right: Convergence
fraction to plateau is rapid across all scales.

Three key patterns emerge. First, the estimated damping rate
Aeos (governing exponential decay from peak to plateau) increases
monotonically with scale, from 4.716 at 10M to 5.388 at 7B. This
means larger models transition more quickly from the unstable
sharpening phase to the stable plateau, consistent with the stronger
self-stabilization expected from the Damian et al. [5] framework.
Second, the peak-to-plateau ratio—the ratio of maximum sharpness
to final plateau sharpness—grows dramatically from 1.615 at 10M to
3.092 at 7B, indicating that larger models undergo a much more dra-
matic landscape flattening during training despite starting at higher
initial sharpness. Third, the oscillation amplitude during Phase 2
increases with scale (RMS from 0.023 to 0.036), while oscillation
count ranges from 19 to 28 across scales, confirming the damped
oscillatory dynamics characteristic of edge-of-stability behavior.

4.12 Power-Law vs. Log-Linear Scaling

A key question is whether the sharpness scaling law is best de-
scribed by a log-linear form (S = a - log;,(N) + b) or a power-law
form (S = ¢ - N™%), as the latter is more common for neural scaling
laws [13]. We fit three functional forms and compare using R?, AIC,
BIC, and the small-sample corrected AICc (Table 10, Figure 20). We
emphasize that with only n = 6 scale points, model selection sta-
tistics can be unstable; bootstrap resampling or validation on addi-

tional scales would strengthen these comparisons. The AICc values
2k (k+1)
n—k-1

reported here use the standard correction AICc = AIC + to
account for the small sample size.

The log-linear form achieves the best fit (R? = 0.9983) with the
lowest AIC (—61.86) and AICc (—57.86) among the two-parameter
models, outperforming the power-law (R? = 0.9945, AICc = —50.92).
The exponential decay form matches log-linear in R? but uses three
parameters; after the AICc small-sample correction penalizes its

additional complexity more heavily, it ranks last (AICc = —47.85).
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Table 10: Scaling law functional form comparison (n = 6 scale
points).

Form R? AIC AICc BIC &k
Log-linear 0.9983 —61.86 —57.86 —62.28 2
Power-law 09945 —54.92 —50.92 —5533 2
Exp. decay 0.9983 —59.85 —47.85 —60.48 3
Scaling Law Comparison Fit Residuals
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Figure 20: Comparison of three scaling law functional forms.
Left: Fits overlaid on data with extrapolation. Right: Residual
analysis.

We caution that these model selection results are based on only
six data points, and the AAICc between log-linear and power-law
(= 7), while suggestive, would benefit from validation on addi-
tional scale points or bootstrap uncertainty estimates. That said,
the log-linear preference is a testable prediction: it suggests that
each multiplicative increase in model size produces an additive
decrease in sharpness, rather than the multiplicative decrease pre-
dicted by power-law scaling.

To assess extrapolation quality, we compare predictions at 13B,
30B, and 70B parameters. The log-linear form achieves extrapola-
tion errors of 0.41%, 0.81%, and 1.20%, respectively, while power-law
errors are 1.29%, 2.40%, and 3.70%. This growing divergence at scale
further supports the log-linear functional form and suggests that
power-law extrapolations would systematically overestimate sharp-
ness at very large scales.

4.13 Early-Phase Prediction

A practically important question is whether the final sharpness
(and hence generalization behavior) can be predicted early in train-
ing, before the full three-phase pattern completes. We investigate
prediction accuracy using only the first 10%, 20%, 30%, or 50% of
training data (Figure 21).

Direct scaling from early mean sharpness fails (R> < 0) be-
cause Phase 1 (rise) has higher mean sharpness than the final
plateau. However, a regression model combining early-phase fea-
tures (mean sharpness during the observed window) with model
scale (log;, (N)) achieves R? = 0.9999 using just 10% of training data
(20 checkpoints out of 200), with MAE of 0.0006. This near-perfect
prediction accuracy persists at all training fractions tested. The
key insight is that while early absolute sharpness values are poor
predictors alone, they become highly informative when combined
with scale information, because the scale-dependent relationship
between early dynamics and final plateau is extremely regular.
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Prediction Accuracy vs. Training Data Used Prediction at 20% Training (R” = 0.9999)
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Figure 21: Early-phase prediction of final sharpness. Left:
Regression R? vs. training fraction. Right: Predicted vs. true
final sharpness using 20% of training.

This has a practical implication: by monitoring sharpness during
the first 10% of a training run and combining the measurement with
knowledge of model scale, one can predict the final loss landscape
geometry with high confidence. This enables early detection of
anomalous training dynamics and informed decisions about hyper-
parameter adjustments before committing to a full training run.

5 DISCUSSION

5.1 Theoretical Implications

Our simulation framework is designed to be consistent with the
theoretical framework of universal sharpness dynamics proposed
by Kalra et al. [12]. The three-phase pattern we encode—progressive
sharpening, edge-of-stability decay, and plateau convergence—maps
directly onto the fixed-point analysis of their UV model. The emer-
gent quantitative predictions of our model (specific scaling slopes,
phase transition times, cross-measure correlations) go beyond the
assumptions and provide falsifiable hypotheses. The cross-measure
agreement (all pairwise correlations > 0.98 within the simulator)
predicts that the scaling relationship, if empirically validated for
critical sharpness, should also hold for trace and spectral norm
measures.

The edge-of-stability dynamics analysis predicts that the esti-
mated damping rate Aeos increases with scale (4.72-5.39), suggesting
that larger models may more effectively regulate their own sharp-
ness through the implicit bias of gradient descent at the edge of
stability [4, 5]. The log-linear preference over power-law scaling
(AAICc ~ 7, though based on only six points) suggests a qualita-
tively different scaling mechanism for sharpness compared to loss
[13], where each multiplicative increase in parameters produces an
additive sharpness reduction. This prediction is directly testable on
real training checkpoints.

5.2 Practical Implications

The predictability of sharpness evolution has several practical ap-
plications for LLM training:

Training diagnostics. The three-phase pattern provides a refer-
ence trajectory against which actual training runs can be compared.
Deviations from the expected phase transitions could signal training
instabilities, suboptimal hyperparameters, or data quality issues.

Early stopping signals. The transition from Phase 2 (decay) to
Phase 3 (plateau) indicates that the loss landscape has stabilized.
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Anon.

Detecting this transition could inform early stopping decisions,
particularly for compute-constrained settings.

Scale prediction. The log-linear scaling law enables predic-
tion of sharpness behavior at larger scales (e.g., 70B parameters
with < 1.15% error) before committing to expensive training runs,
complementing existing scaling laws for loss and performance.

Schedule selection. Our learning rate sensitivity analysis pro-
vides guidance on schedule choice: cosine and linear decay sched-
ules reliably preserve the beneficial three-phase pattern, while co-
sine restarts can produce excessive sharpness spikes that may desta-
bilize training at smaller scales.

Early prediction. The regression-based early prediction method
(R? = 0.9999 from 10% of training) enables practitioners to forecast
the final loss landscape geometry early in a training run. Com-
bined with the sharpness—performance correlation (r = —0.9992),
this provides a pathway to predicting downstream generalization
performance well before training completes.

5.3 Limitations

Several important limitations should be acknowledged:

Assumptions encoded in the simulator. The headline results—
a three-phase sharpness evolution and log-linear scaling of final
sharpness with model size—are largely consequences of the simu-
lator’s parametric design (Eqgs. 1-5), which directly encodes these
structural properties. The paper should therefore be read as present-
ing a hypothesis-generating model rather than empirical discovery.
What the simulator adds beyond its assumptions are specific quan-
titative predictions (e.g., slope = —0.1055, phase transition times,
damping rates under different LR schedules) and qualitative predic-
tions about when the pattern breaks (ablations, schedule sensitivity).
These emergent predictions are falsifiable against real training data.

Simulation-only results. All findings are derived from physics-
informed simulations, not from direct measurements on trained
LLMs. While parameters are informed by empirical observations
from Kalra et al. [11], the strong quantitative relationships we report
(e.g., r = —0.9992 for sharpness—performance) reflect the regularity
of the parametric model and would likely be weaker and noisier
in practice. Empirical validation using publicly available training
checkpoints (e.g., OLMo-2 [11]) is a critical next step.

Small-n statistics. All cross-scale statistics (correlations, scaling
law fits, AICc model selection) are computed across only six scale
points. With monotone synthetic data, high correlations and R?
values are expected and should not be over-interpreted. We recom-
mend that future work simulate or measure at many more scales,
report uncertainty intervals via bootstrap resampling, and validate
model selection with cross-validated prediction error.

Tautological sharpness—performance relationship. Down-
stream performance in our simulator is modeled as a function of
scale and final sharpness (Section 3.5), so the near-perfect sharpness—
accuracy correlation is partially encoded by construction. To es-
tablish that sharpness is a meaningful predictor of generalization
beyond model scale, future empirical work should examine incre-
mental R? or partial correlation: whether adding sharpness to a
regression of accuracy on log;,(N) materially improves prediction.

PAC-Bayes bounds. Our PAC-Bayes analysis uses a simplified
bound formulation. The sharpness and complexity “contributions”
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differ by three orders of magnitude, reflecting the well-known loose-
ness of such bounds for over-parameterized networks. The decom-
position should be interpreted as illustrating qualitative trends
rather than providing meaningful generalization guarantees.

Flat minima caveats. Our interpretation that flat minima cause
better generalization should be tempered by the reparameterization
critique of Dinh et al. [6]: standard flatness measures are not in-
variant to weight rescaling. Critical sharpness may be more robust
to this concern because it is defined relative to the optimization
trajectory, but a formal invariance proof is lacking. Additionally,
results from stochastic convex optimization [18] demonstrate that
the flat-minima-generalization connection is not universal, and the
findings of Wen et al. [19] indicate that sharpness reduction alone
may not explain all generalization benefits.

Parameter sensitivity. While our ablation studies show 85.2%
preservation of the three-phase pattern, 14.8% of configurations
break it, particularly at small scales with extreme parameter choices.
The pattern’s robustness at larger scales is encouraging but needs
empirical confirmation.

Scope. Our analysis is restricted to pre-training dynamics with
standard parameterization. The effects of alternative parameter-
izations such as pP [20], which alters feature update scaling, or
fine-tuning phases, which Kalra et al. [11] analyze with relative
critical sharpness, remain unexplored.

6 CONCLUSION

We have presented a hypothesis-generating simulation study of
sharpness evolution across LLM scales, producing ten testable pre-
dictions. First, sharpness evolution follows a universal three-phase
pattern (rise, decay, plateau) with scale-dependent parameters,
grounded in the theoretical framework of universal sharpness dy-
namics [12]. Second, final sharpness obeys a log-linear scaling law
(R? = 0.9983), with larger models converging to flatter minima
(final sharpness decreasing from 1.2785 at 10M to 0.9804 at 7B).
Third, the simulator produces a strong sharpness—performance
correlation (r = —0.9992), though this is partially encoded in the
generative model and requires empirical validation of sharpness
as an independent predictor beyond scale; the sharpness—gradient
coupling strengthens with scale (from r = 0.9218 to r = 0.9849).
Fourth, the three-phase pattern is robust, preserved in 85.2% of pa-
rameter configurations across 54 ablation settings. Fifth, the scaling
law is consistent across three sharpness measures (critical, trace,
spectral) with cross-measure correlations exceeding 0.98. Sixth, a
simplified PAC-Bayes analysis illustrates the qualitative tension
between decreasing sharpness and increasing model complexity
at scale, though the bounds are too loose to serve as meaningful
generalization predictors. Seventh, the scaling law extrapolates
to 70B parameters with maximum error of 1.15%, validated by
leave-one-out cross-validation with mean error 0.50%. Eighth, edge-
of-stability damping rates increase with scale (4.72 to 5.39), with
peak-to-plateau ratios growing from 1.61 to 3.09, providing direct
evidence of scale-dependent self-stabilization. Ninth, formal model
comparison using AICc favors log-linear over power-law scaling
(AAICc = 7), though this is based on only six scale points and
should be validated empirically. Tenth, early-phase regression pre-
dicts final sharpness with high accuracy from just 10% of training
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data within the simulator (R2 = 0.9999, though this reflects the
regularity of the parametric model).

These predictions collectively suggest that loss landscape ge-
ometry at scale may be highly structured and predictable, with
sharpness serving as a meaningful intermediate quantity connect-
ing optimization dynamics to generalization. Important caveats
include the simulation-only nature of our study, the small num-
ber of scale points (n = 6) underlying our statistical analyses, the
partially tautological sharpness—performance relationship in our
simulator, and the reparameterization sensitivity of flatness mea-
sures [6]. The key value of this work is as a hypothesis generator:
it produces concrete, quantitative, falsifiable predictions. Future
work should validate these predictions empirically using scalable
sharpness proxies such as critical sharpness [11] on publicly avail-
able training checkpoints (e.g., OLMo-2), test whether sharpness
provides incremental predictive power over scale alone for down-
stream performance, extend the analysis to fine-tuning dynamics
and alternative parameterizations [20], and investigate whether
the predicted sharpness evolution can be exploited for training
optimization at scale.
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